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Figure 1: The People Approaching Robots Database (PAR-D) consists of a subset of the ATC Approach Trajectory dataset [28] 
with augmented ground truth labels (a) and two new datasets captured with a robot photographer, illustrated in (b). The lines 
and arrows drawn on the images represent future human trajectories. Image (a) is from https://dil.atr.jp/sets/approach_robot/. 

Abstract 
This work studies the problem of predicting human intent to inter-
act with a robot in a public environment. To facilitate research in 
this problem domain, we first contribute the People Approaching 
Robots Database (PAR-D), a new collection of datasets for intent pre-
diction in Human-Robot Interaction. The database includes a sub-
set of the ATC Approach Trajectory dataset [28] with augmented 
ground truth labels. It also includes two new datasets collected 
with a robot photographer on two locations of a university cam-
pus. Then, we contribute a novel human-annotated baseline for 
predicting intent. Our results suggest that the robot’s environment 
and the amount of time that a person is visible impacts human 
performance in this prediction task. We also provide computational 
baselines for intent prediction in PAR-D by comparing the perfor-
mance of several machine learning models, including ones that 
directly model pedestrian interaction intent and others that predict 
motion trajectories as an intermediary step. From these models, we 
find that trajectory prediction seems useful for inferring intent to 
interact with a robot in a public environment. 
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1 Introduction 
Humans often indicate their social intentions through nonverbal 
signals, including their motion trajectory, walking speed, and gaze 
patterns [29]. By understanding and responding to these signals, 
robots can more appropriately interact with users. For example, a 
robot could identify users who may want to interact with it based 
on their motion and then proactively greet them [23], address users 
who are waiting their turn to approach it [10], or end an interaction 
in a socially appropriate manner when it seems like people want to 
leave [6]. Reasoning about human intention is particularly useful 
for robots that are deployed in dynamic environments, like transit 
stations [56], museums [27, 58], malls [14, 26] or universities [43, 
50]. In such public settings, people typically behave in more varied 
ways than in controlled laboratory environments [25]. 
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In this work, we study the problem of predicting intention to 
interact with a public robot. Given observations of the humans 
nearby a robot, the goal is to classify individual pedestrians into 
one of two categories: as intending to interact or not intending to 
interact with the robot in the near future. 

We present the People Approaching Robots Database (PAR-D), 
a new collection of datasets for predicting a human’s intent to 
interact with a robot in public environments, as in the scenarios 
of Figure 1. This database includes an augmented version of the 
ATC Approach Trajectory dataset [28], and two new datasets of 
interactions with a robot photographer on a university campus. 

We investigate the complexity of the intent prediction problem 
on PAR-D by first establishing a human baseline for intent predic-
tion. To this end, we conducted an online survey where participants 
were shown clips of examples from the database and annotated 
whether they thought people intended to interact with a robot. 
We then explored using a variety of computational approaches for 
modeling interaction intent on the PAR-D database. Two types 
of models predict intent from the observations of a pedestrian di-
rectly, while a third type predicts future motion trajectories as an 
intermediary step to inferring intent. 

Our results suggest human accuracy on predicting interaction 
intent is influenced by both the environment of the robot and the 
length of time that the person is observed. We also found that 
predicting future motion trajectories as an intermediate step is 
more effective then predicting intent directly in more nuanced 
settings. 

In summary, our work has three main contributions: 

(1) The PAR-database, a new database for predicting human intent 
with a public robot which provides a richer observation space than 
existing public 1 datasets.  

(2) A human baseline for interaction intent prediction for PAR-D. 
(3) An evaluation of machine learning models for predicting inter-
action intent on PAR-D, including open code and models. 

2 Related Work 
Human Engagement with Robots. The concept of interaction 
intent is tightly coupled with the notion of user engagement, which 
has been studied in Human-Robot Interaction (HRI) for many years. 
For example, past work has focused on defining and measuring 
engagement in different contexts [5, 13, 17, 32, 44], understand-
ing how robot behaviors influence human engagement [51, 59], 
adapting robot behavior based on current engagement [1, 12], and 
identifying user disengagement [3, 6, 8, 11, 36]. See Oertel et al. [46] 
for a recent review on engagement in Human-Agent Interaction. 

Interaction Intent in HRI. While definitions of engagement are 
helpful for identifying when a person has started an interaction, 
we are primarily interested in whether someone intends to engage 
(or interact) with a robot in the near future. In human-human in-
teractions, intent to engage in social encounters is often expressed 
through proxemic behavior [29, 49], i.e., how people move and 
position themselves relative to other people. Prior HRI research 
has suggested that humans utilize similar patterns in human-robot 

1https://interactive-machines.com/resources.html 

interactions [21, 62], motivating intent prediction models that lever-
age historical motion information to make intention predictions 
[10, 18, 23, 33, 69], especially in one-on-one interaction settings. 
For instance, prior work has used heuristics [18] and a wide variety 
of machine learning models for this task [9, 10, 18, 33, 38, 60]. The 
latter type of approaches have demonstrated the value of using 
of pose features [60], proxemic features [69], and facial features 
[38] for intent prediction. Further, recent work has highlighted the 
usefulness of neural networks for this inference task [23, 60, 69]. 

Despite this progress, it remains an open question how com-
putational model performance compares to human performance 
on intent prediction in HRI. Our work aims to address this gap by 
establishing human baselines for interaction intent prediction on 
several datasets. These baselines can help better understand the 
performance of machine learning models on this problem domain. 

HRI Datasets for Intent Prediction. There is a limited number 
of open datasets to study spontaneous, public human-robot inter-
actions. One particularly relevant dataset is the ATC Approach 
Trajectory dataset, which we augment in our work due to limited 
ground truth labels (as detailed in Sec. 3.1). To the best of our knowl-
edge, UE-HRI dataset [7] is the only other open dataset that could 
be used to study our problem of interest in public environments; 
however, pedestrians were instructed that only one person had to 
be close to the robot at a time, which may have influenced groups 
of people approached the robot. Also, in the UE-HRI dataset, lines 
on the ground indicated to humans where they should stand to 
interact with the robot. This limited the observed human behavior 
and made the data collection less naturalistic than the ATC dataset. 

As part of this work, we contribute two datasets in PAR-D that 
were collected with Shutter, a robot on a photography kiosk. The 
new dataset includes interactions in two public settings and con-
tains rich pose features for pedestrians. One of our motivations to 
collect new data for predicting human intent to interact with a robot 
is a growing interest in data-driven modeling in multi-party HRI [4]. 
Additionally, we wanted to study the problem of interaction intent 
with a different robot, type of interaction, and cultural context than 
those considered for the ATC dataset. This effort aimed to enrich 
the existing corpus of HRI data and open up doors to evaluate the 
generalizability of different machine learning approaches across 
environments and interaction scenarios. 

3 The PAR Database (PAR-D) 
This work contributes the People Approaching Robots Database, 
which consists of 3 datasets for intent prediction in Human-Robot 
Interaction. One dataset is a subset of the ATC Approach Trajec-
tory dataset [28], which shows Robovie in a shopping mall in Japan, 
with augmented labels for human intent prediction in multi-party 
settings. The other two datasets are new. They were collected with 
Shutter, a robot photographer, in two university buildings in the 
United States. There are three major differences between the ATC 
data and the Shutter data. First, the ATC data provides fewer fea-
tures to describe human behavior than the Shutter data. The ATC 
dataset only includes position, orientation, and velocity of the head 
and body of people and the robot and the relative orientation of the 
person’s head and body to the robot’s body orientation. The Shut-
ter datasets provide position, orientation, and velocity for both the 
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robot and each human body joint as well as relative orientation and 
distance of the person’s head and body to the robot’s head and cart 
(see Sec. 1.2 and Table 3 in Appendix for details on dataset features). 
This makes the Shutter data richer in terms of human observations. 
Second, the visibility of pedestrians varies across the datasets. The 
ATC dataset was recorded with a number of environmental sensors, 
providing a prolonged and wide view of people around the robot, 
with minimal occlusions. Meanwhile, the Shutter data provides a 
more limited view of pedestrians, resulting in shorter observations 
of people nearby the robot and more occlusions. Third, the datasets 
differ in terms of their deployment locations and, thus, constraints 
on human spatial behavior. The ATC dataset was collected in an 
open area of a mall. There is almost no interference on peoples’ tra-
jectories from physical obstacles nearby the robot. By contrast, the 
Shutter data was collected in building lobbies with specific entry 
and exit points. The robot was placed near walls, such that it would 
not block pedestrian walkways. This placement is representative of 
non-mobile robots in public spaces, such as robots that serve as re-
ceptionists [35] or information providers [9, 10]. The next sections 
further describe the datasets. 

3.1 Augmented ATC Dataset 
The ATC Approach Trajectory dataset [28] shows people interact-
ing with Robovie in a shopping mall. The robot had two behavioral 
conditions in the ATC dataset: proactively approaching a pedes-
trian, or passively waiting for an interaction to begin. In this work, 
we only considered the latter examples because we were interested 
in predicting human intent to interact with the robot, not exploring 
the effect of robots displaying intent to interact.2 A brief description 
of dataset features is found in Table 4 in Appendix. 

To identify scenarios when the robot passively waited for an 
interaction to begin, we checked the robot’s velocity. In particular, 
we filtered out examples were the velocity was nonzero at any 
point in time during a scenario. This resulted in a dataset with 63 
scenarios where nobody interacts with the robot and 64 scenarios 
which end in an interaction with the robot. 

3.1.1 Data Collection Platform. Robovie is a mobile robot with 
a height of 120cm, 4 degrees of freedom arms and 3 degrees of 
freedom head. During data collection, people were tracked using 
environment sensors, beyond the robot’s field of view. An example 
scenario where a person approached Robovie is shown in Fig. 1(a). 

3.1.2 Data: Input Features and Ground Truth Labels. The ATC 
dataset includes position, velocity, and head orientation for Robovie 
and each pedestrian in a scenario. Up to 56 people can be observed 
in a single frame of data. For each scenario, the ATC dataset in-
cluded labels for when a pedestrian started a conversation with the 
robot. Unfortunately, only one pedestrian was labeled as interacting 
with the robot in each positive scenario where the robot passively 
waited for interactions, even though other people seemed to inter-
act with the robot as well in several cases. Thus, we augmented the 
original ATC interaction labels. 

An annotator watched videos of a generated top-down view of 
the scene and labeled all people whom they considered to interact 
with Robovie. Interaction was defined as displaying similar behavior 

2See https://dil.atr.jp/ISL/sets/approach_robot/ for more details about the original data. 

to the person who had already been labeled as interacting with 
the robot. To check that the annotation procedure was repeatable, 
a second annotator then followed the same procedure described 
above. The annotations resulted in a Cohen’s Kappa score of 0.835, 
indicating high reliability. 

In the remainder of this work, we used the original labels in the 
ATC dataset and the labels from the first annotator to generate 
ground truth targets for intent prediction. This choice maximized 
the internal consistency of the target values used for training ma-
chine learning models (Sec. 5). Overall, with the new labels, the 
dataset contains observations for 112 people who interact with the 
robot and 4245 people who do not interact with the robot. See the 
supplementary video for example visualizations of the ATC data. 

3.2 Shutter Interaction Datasets 
We collected two new datasets with a robot placed in the lobby of 
two different university buildings. We further refer to one dataset 
as Shutter-Lobby1 and to the other as Shutter-Lobby2. 

3.2.1 Data Collection Platform. The robot, called Shutter, served 
as a photographer to passersby for both datasets. Shutter is an open-
source social robot built on a 4 degree of freedom arm [57]. The 
robot’s head is a screen with rendered eyes (Fig. 1(b)). The robot was 
mounted on a cart, which housed a desktop computer controlling 
the robot beneath the cart’s surface. Also, the cart helped gather 
human input via physical buttons and record observations of the 
environment and interactions with two forward-facing Microsoft 
Azure Kinect sensors that provided body tracking data. Shutter 
interacted with users using motion, gaze, text-to-speech, and the 
buttons on the front of the cart. A monitor behind the robot com-
municated visual information, such as photos taken of users. 

3.2.2 Interaction with the Robot. The behavior of the robot was 
managed with a behavior tree [16, 37]. In particular, Shutter main-
tained a resting pose until a person entered the field of view of 
either Kinect sensor. Then, it randomly selected one of three greet-
ing behaviors: looking away from the person, tracking the person 
with gaze and motion, or tracking the person with gaze and mo-
tion while verbally greeting them. The interaction advanced if the 
person pressed any of the cart’s buttons. In this case, the robot 
explained its role as a photographer, took a photo of the user with 
a camera attached to its head and showed the picture on the screen 
behind it, praising it verbally. Interactions could be halted by users 
at any time by exiting the robot’s field of view, after which the 
robot returned to a resting pose. 

3.2.3 Data Collection Procedure. Our data collection process took 
place on 13 days over three weeks in August 2022, resulting in 
a total of 5 hours of data with 1059 unique recordings. In these 
recordings, 2429 people passed by Shutter, 393 of whom interacted 
with the robot. Deployments occurred at different times to observe 
varied pedestrian patterns throughout a working day. On each day 
of recording, we placed the robot in its deployment location (either 
Lobby1 or Lobby2) and monitored the platform from an adjacent 
hallway to remove the influence of robot handlers on users [55]. 
The system was restarted if an operational failure arose. 

The layout of the two environments where Shutter was deployed 
are shown in Figure 2. The robot was placed close to building lobbies, 
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Figure 2: The two deployment locations for the collection of 
the Shutter Interaction dataset. The gray areas represent the 
field of view of each of Shutter’s cameras. 

nearby primary entry and exit points of the area and oriented 
against a wall to ensure all approaching people were visible. In 
Lobby1 (Figure 2, left), people could approach the robot frontally 
or from either side. In Lobby2 (Figure 2, right), people approached 
the robot from the sides. Both lobbies were accessible from public 
streets, so campus visitors, students, and staff passed the robot in the 
course of its deployment. See the supplementary video for example 
clips that show how the robot was deployed in both lobbies. 

3.2.4 Data: Input Features and Ground Truth Labels. A frame of a 
scenario includes position and orientation information about each 
pedestrian and the robot. All coordinates and angles are in a global 
coordinate frame specific to each environment because the robot’s 
position varied slightly during each deployment. More details on 
the input data can be found in the supplementary Appendix. 

Each person in the Shutter Interaction dataset was labeled as 
interacting or not interacting with the robot based on two criteria: 
1) whether a button was pressed and the person was standing 
in close proximity to the robot, and 2) whether the person was 
moving very slowly, facing the robot, and in close proximity to 
the robot. Close proximity was defined as 3.6 meters, based on 
Hall’s proxemic zones [20]. Slow walking speed was defined as less 
than .65 meters/second, which is half of a typical adult walking 
speed [53]. To reduce noise in the response variable, if either of the 
criteria were true for at lease three consecutive frames, the person 
was labeled as interacting with the robot. 

3.3 Intent Prediction with PAR-D 
In PAR-D and the rest of this paper, we view intent prediction as 
mapping a history of 𝑑 features of a pedestrian’s behavior over 𝑇 
time-steps to whether or not the person intends to interact with 
a robot within 4 seconds in the future. We chose a 4 second cut-
off based on the work by Bohus and Horvitz [9]. It is important 
to acknowledge that human intent is a non-observable value. We 
approximate this value under the assumption that if someone inter-
acts with the robot – as annotated in the ATC and Shutter datasets 
– it is because they intended to do so in the near past. 

With the machine learning models analyzed in Sec. 5, we ap-
proximate the above mapping with a function 𝑓 : R𝑑 ×𝑇 → {0, 1}, 
trained with a labeled dataset Dtrain = {(X𝑖 , 𝑦𝑖 )}𝑖=1...𝑁 of input 
features X𝑖 ∈ R𝑑 ×𝑇 and corresponding targets 𝑦 𝑖 ∈ {0, 1} from 
PAR-D. The input, X𝑖 , is a sequence of features for an individual 
pedestrian: X𝑖 = [x𝑖1, x

𝑖
2, . . . , x

𝑖 
𝑇
], where each x𝑖 𝑡 includes at least 

the position and velocity of the person 𝑖 at time 𝑡 . As in prior work 

[9], the target 𝑦𝑖 is computed based on whether the pedestrian 𝑖 
indeed interacts with the robot in the near future. Before we dis-
cuss machine learning methods to compute 𝑓 , we present a human 
baseline for this prediction problem in the next section. 

4 Human Prediction Baselines 
We created a human baseline for predicting intent in a subset of 
PAR-D as a reference to better understand the performance of com-
putational models. To this end, we recruited 84 annotators through 
Prolific,3 a tool for crowd-sourcing responses to online surveys. 
The annotators watched video representations of scenes from one 
of the three PAR-D datasets, and predicted whether a specific pedes-
trian would interact with the robot within 4 seconds after the video 
ended, per our problem formulation for intent prediction in Sec. 3.3. 

In the annotation survey, each video clip showed a specific, high-
lighted person for 0.2 to 4 seconds from a given sequence, an in-
teraction scenario where people pass by or interact with a robot 
in PAR-D. Multiple people from the same sequence were often 
used as separate examples. This was an important consideration be-
cause humans can affect the way other pedestrians interact socially 
[20, 42] and we wanted to see, for example, whether people that 
shared physical space nearby a robot were annotated in accordance 
to the ground truth values for interaction intent in PAR-D. 

4.1 Annotation Survey 
Each survey included 20 clips from a single dataset in a randomized 
order and was completed by 7 different annotators via Prolific. The 
annotators were compensated at a rate of $16 USD per hour for 
completing the survey. Further, at the start of the survey, they were 
incentivized to perform accurately with a performance-based bonus 
of $0.05 USD for each correct intent prediction. 

4.1.1 Training: The survey first introduced the robot and showed 
example clips from the dataset. Then, it asked annotators to an-
swer two practice questions before annotating clips for our human 
baseline. These practice questions served to clarify the annotation 
task and reduce errors. One practice question showed a positive 
example of a person intending to interact with a robot, and the 
other showed a negative example. Both examples included an ex-
planation of the correct annotation, which the participant could 
see after they answered the question. 

4.1.2 Annotations: Each participant was shown a series of clips, 
each with a single person highlighted. For each clip, they were 
asked “Will the highlighted person interact with the robot?” and could 
choose among two answers. One answer was “Yes, the highlighted 
person will interact with the robot within 4 seconds of the end of the 
clip” ; the other was “No, the highlighted person will not interact with 
the robot within 4 seconds of the end of the clip”. 

The next two sections describe in detail how we created the 
specific clips that were used for computing the human baselines in 
PAR-D. Then, we present the results from this annotation effort. 

3https://prolific.com 
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4.2 Annotated Data Samples for ATC 
For the ATC dataset in PAR-D, a total of 80 examples were selected 
for annotation. To select these examples, we first split the dataset 
into 5 folds because we were interested in evaluating the perfor-
mance of machine learning models across different partitions of 
the data with cross-validation (as later described in Sec. 5. Prelimi-
nary results on the folds helped us identify the easiest (“Easy”) and 
hardest (“Hard”) folds in the data, from which we then chose a pool 
of 40 examples each – 20 positive and 20 negative – for the human 
baseline. The specific procedure used to select these examples is in 
the Appendix in the supplementary material. 

For the annotation survey for the ATC dataset, each video clip 
was exactly 20 frames (4 seconds long). The start time for each 
clip was chosen uniformly between the first time the highlighted 
person was visible and 4 seconds before the last time they were 
visible. The clips were created as 2D visualizations, similar to the 
examples shown in the supplementary video but without revealing 
the ground truth labels for the examples. 

4.3 Annotated Data Samples for Shutter 
Similar to the ATC dataset, we selected 80 examples from the 
Shutter-Lobby1 and 80 examples from the Shutter-Lobby2 datasets 
for the human baseline. However, due to a more limited field of the 
environment and more occlusions in the Shutter data than the ATC 
data, fewer people were visible in a single sequence for Shutter and 
the sequences were much shorter. As a result, we selected the exam-
ples for the human baselines for the Shutter datasets by choosing 
examples with special consideration for how long a person was 
visible from the Kinect sensors on Shutter’s cart. 

We balanced the example pools for the Shutter-Lobby datasets 
by both positive and negative examples and by the window of time 
that a person was visible. We grouped the length of time that a per-
son is visible into four time windows of (0, 1], (1, 2], (2, 3], and(3, 4] 
seconds. In particular, for a given Shutter dataset, we selected 10 
positive and 10 negative examples for each time window. The spe-
cific procedure used is described in Section 3 of the Appendix. 

For the annotation surveys for the Shutter-Lobby datasets, each 
clip could be between 1 frame (0.2 seconds) and 20 frames (4 sec-
onds). The start time for each clip was chosen uniformly from the 
time that the highlighted person was visible. The clips were cre-
ated as 3D visualizations, similar to the examples shown in the 
supplementary video but without revealing the ground truth labels. 

4.4 Human Prediction Performance 
4.4.1 Prediction Metrics. For a given example, a prediction label 
for the human baseline was determined by the mode of annotators’ 
responses. Then, we compared the predictions with the ground 
truth labels from the datasets, and evaluated performance with 
standard classification metrics: accuracy, F1 score, Precision, and 
Recall. We also measured the average entropy of the annotations 
for each dataset, which was calculated across participants for each 
clip. Entropy provides information about how much agreement 
there was in the annotations for a given clip. 

4.4.2 Results. Table 1 shows the performance of human annota-
tors at predicting pedestrians’ intent to interact with Robovie and 

Dataset Acc. F1 P R Avg. Entropy 

ATC - Easy Fold 0.88 0.86 0.94 0.8 0.27 
ATC - Hard Fold 0.85 0.83 0.79 0.88 0.33 
Shutter-Lobby1 0.67 0.72 0.63 0.83 0.39 
Shutter-Lobby2 0.65 0.65 0.65 0.65 0.42 

Table 1: Human baseline performance on the ATC, Shutter-
Lobby1 and Shutter-Lobby2 datasets. “Acc.” is Accuracy, “P” 
is Precision, “R” is Recall, and “Avg.” is Average. 

Shutter-Lobby1 Dataset 

Visibility (secs.) Acc. F1 P R Avg. Entropy 

(0, 1] 0.80 0.82 0.75 0.9 0.40 
(1, 2] 0.5 0.62 0.50 0.80 0.40 
(2, 3] 0.75 0.76 0.73 0.80 0.39 
(3, 4] 0.65 0.70 0.62 0.80 0.38 

Shutter-Lobby2 Dataset 

Visibility (secs.) Acc. F1 P R Avg. Entropy 

(0, 1] 0.5 0.5 0.5 0.5 0.5 
(1, 2] 0.75 0.67 1.0 0.5 0.42 
(2, 3] 0.85 0.87 0.79 1.0 0.40 
(3, 4] 0.50 0.55 0.50 0.60 0.35 

Table 2: Human baseline performance based on the time a 
person was visible in the Shutter-Lobby datasets. “Acc.” is 
Accuracy, “P” is Precision, “R” is Recall, and “Avg.” is Average. 

Shutter. Human prediction performance was best on the easiest 
ATC fold (“Easy Fold” in Table 1), reaching 0.88 in Accuracy and 
0.86 in terms of F1 score. Performance on the hardest fold for the 
ATC dataset was also high, with an F1 score of 0.83. Meanwhile, 
the human baseline performance on the Shutter-Lobby datasets 
was lower in terms of both Accuracy and F1 scores. For example, 
in Lobby1 and Lobby2, the F1 score was 0.72 and 0.65, respectively. 

The F1 scores of the human baselines correlated with agreement 
among the annotators, e.g., as the easiest ATC fold had the lowest 
average entropy (indicating highest agreement). 

Table 2 breaks down the results by the length of time that a 
person was visible by Shutter. Disagreement among annotators 
reduced from 0.4 to 0.38 and from 0.5 to 0.35 as the duration of 
pedestrian observations increased for both Shutter-Lobby1 and 
Shutter-Lobby2, respectively. In terms of Accuracy and F1 score, 
there seemed to be a complex relationship between performance, 
how long a person is visible, and specifics of the Shutter datasets. 
For example, in Shutter-Lobby1, Shorter observations with a length 
of (0,1] seconds led to highest performance and a length of (2,3] sec-
onds led to second-best performance. But a length of (1,2] seconds 
had worst performance. The results are different for Lobby2 where, 
for instance, the (0,1] length led to worst prediction performance. 

4.5 Discussion of Human Baselines 
We suspected that the Shutter-Lobby datasets could result in higher 
human prediction performance because they provide much richer 
observations of pedestrians than ATC, allowing us to visualize the 
data in 3D rather than 2D. However, humans did better at predicting 
intent in the ATC examples, suggesting that the examples in the 
Shutter datasets were more complex or difficult for humans to label. 
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There are many factors that could have contributed to the dif-
ference in performance between the Shutter and ATC data. At first 
glance, one may think that the difficulty stems from the length of 
time people were visible for in the Shutter data; however, this is 
unlikely. The reason is that the F1 scores for the longest-duration 
clips in the Shutter-Lobby datasets was much lower than the scores 
for the ATC datasets (compare Tab. 1 with Tab. 2). Other factors 
that could have led to lower performance in the Shutter data are 
the type of visualizations and noise in the pedestrian poses. In 
terms of visualizations, prior research in HRI suggests that different 
human view-points can affect the legibility of robot motion [45]. 
Thus, the specific type of visualizations (3D vs. 2D) and camera 
angle that we used to render the clips for the annotation surveys 
could have affected the legibility of human behavior in PAR-D. Also, 
there are more environmental constraints on spatial behavior in 
the Shutter-Lobby datasets than the ATC dataset, but none of these 
constraints were rendered in the visualizations. Perhaps the lack of 
this information led annotators to largely agree on the interpreta-
tion of an example, given the similar average entropy for Shutter 
and ATC; but that interpretation was correct less often Shutter than 
ATC. Finally, the increased noise in the pedestrian observations in 
the Shutter data could have negatively affected human prediction 
performance, especially because the human poses were generated 
from fusing observations from two Kinects. The latter challenges 
with noise in human observations are common for real-world robot 
deployments; despite the lower human performance, we believe 
they make the Shutter-Lobby datasets valuable to the community. 

Another important finding from the human baselines is that the 
duration for which a person is visible can impact the predictability 
of their intent to interact with a robot, although we did not observe 
a simple relationship between human prediction performance and 
visibility duration. The complexity of this relationship could be 
due to specifics of the environment in which the Shutter-Lobby 
datasets were recorded. However, for our human baseline, anno-
tators visualized pedestrian behavior similar to how our machine 
learning models make predictions in Sec. 5, focusing on human 
behavior relative to the robot and without awareness of obstacles. 
In the future, considering more spatial constraints can potentially 
increase human baseline performance, given that these constraints 
can impact how people behave spatially around a robot [9]. 

5 Computational Models of Intent 
We investigate the performance of a variety of machine learning 
models on PAR-D. We classify the models into two main types 
(Random Forest models, and Encoder-Decoder models) based on 
their computational structure. All models were all implemented 
following the problem formulation for intent prediction in Sec. 3.3. 
For training and evaluation, the datasets were resampled to 5Hz. 

5.1 Random Forest Models 
We use random forest (RF) models to directly map observations 
of pedestrians to intent targets. In order to better understand the 
value of a variety of features, we considered three different feature 
combinations for these models: position, heuristic, and all features. 
The position features included only the position of the person over 
time, with no information about the robot. The heuristic features 

were those that were critical to create the heuristic labeling pro-
cedure for the Shutter-Lobby datasets. These features were the 
person’s position, orientation, and velocity. Finally, the set with all 
the features considered all the pedestrian features available in the 
ATC and Shutter datasets, respectively, as explained in Sec. 3. 

5.2 Encoder-Decoder Models 
We considered two encoder-decoder architectures to predict inter-
action intent. This type of architecture has gained popularity for 
sequence-to-sequence prediction [30, 47, 48, 63] and data compres-
sion [31, 41, 64] with deep learning [19]. 

In general, the models’ structure can be described as a compo-
sition of two functions: 𝑓 = ℎ ◦ 𝑔, where 𝑔 is an encoder function 
that computes a feature embedding for the input features X and ℎ 
is a decoder function that transforms the output of 𝑔 into an intent 
prediction. Figure 3a illustrates this encoder-decoder structure. The 
encoder function in all the models described below corresponds to 
a Gated Recurrent Unit (GRU) neural network [15] because such 
recurrent models are well suited to summarize sequence data into 
a feature embedding [19]. We denote the encoder simply by 𝑔(X), 
which outputs the last hidden state s(𝑇 ) . 

We consider two decoder architectures in our work. The first 
model is an MLP-based model (GRU-MLP), which has a multi-layer 
perceptron (MLP) as the decoder (Figure 3b). This model was moti-
vated by the effectiveness of neural networks as general function 
approximators [34, 65], the simplicity of multi-layer perceptrons, 
and their popularity in machine learning. The GRU-MLP model 

Pedestrian Features (X) 

Decoder 
h() 

Feature 
Embedding 

g(X) 

Intent 
Prediction 

ŷ 

Recurrent Encoder 
g() 

x t x t-20 

(a) Encoder-decoder structure for intent prediction models. 
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(b) Decoder with multi-layer perceptron. 
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(c) Decoder with recurrent trajectory model and engagement classifier. 

Figure 3: Structure of encoder-decoder models. As in (a), the 
models take pedestrian features X as input, compute an em-
bedding with an encoder 𝑔(), and then predict human intent 
to engage with a robot with a decoder ℎ(). 
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predicts interaction intent directly, mapping the past behavior of a 
pedestrian to their intent, similar to the RF models. 

The second model is a trajectory-based model (GRU-Traj), as 
in Figure 3c. This model uses a decoder composed of a recurrent 
trajectory forecasting model (implemented as a neural network) 
and a current-engagement classifier (implemented as a Random 
Forest). GRU-Traj was motivated by work in trajectory prediction in 
computer vision [52] and the success of recurrent encoder-decoder 
architectures for this task [2, 22, 24]. Intuitively, a person’s motion 
trajectory can tell us about their interaction intent. If we could 
forecast their motion, we could infer their intent by reasoning 
about their future spatial behavior (e.g., as in [43]). 

Neural network models were implemented using PyTorch and 
the RF models were implemented using Scikit-Learn. A detailed 
description of the structure, training, and best hyperparameters for 
these models is provided in the Appendix to facilitate reproducibil-
ity efforts and benchmarking with PAR-D. 

5.3 Evaluation Setup 
We focused our evaluation of the computational models on two 
main research questions: 

RQ1) How well can the different models predict intent in PAR-D? 
RQ2) How does the performance of the machine learning models 
compare with the human baselines? 

For the first question in particular, we considered the RF models 
that used different features for intent prediction as different models, 
although they were of the same classifier type. 

We created two types of test sets for each of the PAR-D datasets 
to investigate the research questions. One type considered all pos-
sible examples in unseen partitions of the data. The other type 
considered the same examples used to compute the human base-
lines in Sec. 4. From now on we refer to these two test sets as “Test” 
and “Annotated”, respectively. 

For the ATC dataset, we used 5-fold cross-validation to create 
five different partitions of the data, as described in Section 4.2. For 
each fold, 20% of the data was used for testing models and the 
rest was used for training and validation. We aggregate results by 
averaging performance over the test folds, which from now on 
we refer to as the “Test” data for ATC. For the human baselines, 
we gathered annotations on a subset of the data of two folds. We 
evaluated performance on each of these folds separately. We further 
refer to them as the “Easy Fold” and the “Hard Fold” for ATC. 

For each of the Shutter datasets, we used the examples that were 
not considered for the human-performance baseline for training 
(90% of the data) and validation (10%). 

Because interaction with the robot is relatively rare, the PAR-
D datasets are highly imbalanced. Only 2% of training examples 
are positive in the ATC Approach Trajectory dataset, 3.7% in the 
Shutter-Lobby1 dataset, and 5.7% in the Shutter-Lobby2 dataset. 
Thus, we evaluate the trained models based on F1 Score, which 
captures the trade-off between precision and recall, and is not biased 
by the majority class like the Accuracy metric. 

5.4 Results 
5.4.1 ATC. Figure 4 shows the F1 scores for the models trained on 
the ATC Approach Trajectory [28] dataset. Detailed results for all 
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Figure 4: F1 scores for machine learning models on the ATC 
test data. The “Easy Fold” and “Hard Fold” sets are the same 
used for our human baselines. Best viewed in color. 

models are in the Appendix in the supplementary material. The RF 
model using all features performed best in terms of average F1 score 
on Test, reaching a score of 0.62. Slightly lower performance was 
obtained with the RF with heuristic and position features, which 
had F1 scores of 0.6 and 0.59, respectively. The GRU-Traj model 
followed with an F1 score of 0.51. The GRU-MLP was the worst-
performing model on Test (0.37 F1 score). 

Interestingly, the RF model with only position features was high-
est performing model type for the “Easy Fold” and the lowest per-
forming on the “Hard Fold”, reaching F1 scores of 0.77 and 0.59, 
respectively. By contrast, the GRU-Traj model was second-lowest 
on the “Easy Fold” with an F1 score of 0.69. However, it had the 
highest score on the “Hard Fold”, with an F1 score of 0.73. 

5.4.2 Shutter-Lobby1 Dataset. F1 scores for the models trained 
on the Shutter-Lobby1 dataset are shown in Figure 5 (top). For 
Shutter-Lobby1, the GRU-Traj model performed best on both the 
“Test” and “Annotated” sets, achieving an F1 score of 0.18 and 0.67, 
respectively. Meanwhile, the RF model with all features performed 
worst on “Test” (F1 score of 0.06) and scored second-highest on 
“Annotated” (F1 score of 0.5). Though the GRU-MLP was second-
highest on “Test”, it did the worst on the “Annotated” data by a 
wide margin, reaching an F1 score of 0.14 and 0.04, respectively. 

5.4.3 Shutter-Lobby2 Dataset. F1 scores for models trained on the 
Shutter-Lobby2 dataset are shown in Figure 5 (bottom). The GRU-
MLP and GRU-Traj models performed best on both the “Test” and 
“Annotated” sets. The GRU-MLP model reached an F1 score of 0.32 
on Test and 0.66 on the Annotated whereas the GRU-Traj model 
had an F1 score of 0.36 on “Test” and 0.62 on the “Annotated”. There 
was no consistent ordering for the performance of the RF models 
between the “Test” and “Annotated” sets. 

5.5 Discussion 
5.5.1 RQ1: Prediction Performance. The results on the ATC and 
Shutter-Lobby datasets suggest that the GRU-Traj models can facil-
itate predicting interaction intent on more nuanced data than other 
model types. In the ATC dataset, the trajectory models have mid-
dling performance on the “Test” and “Easy Fold”, but outperform 
all other model types on “Hard Fold”. In the Shutter-Lobby datasets, 
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Figure 5: F1 scores for machine learning models on Test data 
from Shutter-Lobby1 and Shutter-Lobby2. The “Annotated” 
sets are the same used for our human baselines. 

the GRU-Traj model performs well, outperforming the RF models 
by a wide margin. These findings support the idea that separating 
behavior forecasting from behavior interpretation can be beneficial 
in this problem domain. 

Although the RF models are performant on the ATC dataset, they 
cannot model pedestrian behavior on the Shutter-Lobby datasets 
as well as the encoder-decoder models often can. The data repre-
sentation of the Shutter-Lobby datasets does not seem to be the 
cause for this difference in performance. Making predictions on the 
Shutter-Lobby data with position or heuristic features only did not 
always improve the RF model’s performance. Rather, we suspect 
that the RF models had more difficulty than the encoder-decoder 
models in hard test sets because of the nuanced of the data and the 
input feature space, which the neural networks could more easily 
transform into other useful representations than the RF models. 

Finally, we observed that the performance of the GRU-MLP 
model on the Shutter-Lobby1 Annotated dataset was surprisingly 
low. Further inspection of the model’s predictions indicated that 
the model was predicting mostly negative intent to interact on this 
specific dataset. We suspect this happened because of a distribution 
shift between the training and validation data in the Shutter-Lobby 1 
dataset (which were highly imbalanced) and the annotated samples 
(which had the same number of positive and negative examples). An 
exploratory, additional analysis that supports this idea is presented 
in the last section of the Appendix. 

5.5.2 RQ2: Human and Models Comparison. Performance in the 
Shutter-Lobby2 dataset was similar between computational models 
and humans (F1 score of 0.66 vs. F1 score of 0.65, respectively). 

However, for the ATC and Shutter-Lobby1 datasets, human anno-
tators outperformed the computational models. This may be due 
to a major difference between how the humans and models saw 
the data: models never saw any scene context while humans could 
see all pedestrians at once (similar to the supplementary video but 
without intent labels). Perhaps having more knowledge of the social 
context of the interaction could have helped computational models. 

6 Limitations & Future Work 
Our work has limitations that point to interesting future research 
directions. First, we considered two definitions for interaction in 
this work. One was from the ATC dataset. The other one was a 
heuristic-based definition, which was inspired by [9] and aimed to 
facilitate scalability of the labeling process with the Shutter data. 
However, there are alternative ways to define interaction with a 
robot in public environments. For example, an interaction could be 
defined based on whether a person is paying continuous attention 
to the robot, even if they have not started to explicitly interact with 
each other. Future work could extend our PAR database with labels 
for alternative definitions of interactions. 

Second, we only evaluated a limited set of computational models 
in this work. For example, we explored using a trajectory forecasting 
model in conjunction with a current-engagement classifier, which 
were trained independently in this work. But future work could 
explore training such models jointly by making the engagement 
classifier a neural network as well. Further, other models could use 
transformer architectures, which provide state-of-the-art results in 
trajectory prediction (e.g., [39, 40, 54, 66–68]). 

Another important limitation of our current work is that our 
models do not consider the layout of the environment where people 
encounter the robot. As described by Bohus and Horvitz [9], the 
spatial constraints of an environment can have significant impact on 
how people approach a robot. In future work, we plan to address this 
shortcoming by incorporating information about the environment 
into intent prediction models, e.g., using occupancy maps as in [61]. 

7 Conclusion 
In this work, we first introduced the PAR Database for researching 
pedestrian behavior and intent to interact with robots in public 
spaces. Then, we contributed human baselines for predicting intent 
and discussed several factors that can affect prediction performance, 
including spatial constraints in the robot’s environment and the 
length of time for which a person is observed. Further, we con-
ducted an initial evaluation of computational models for intent 
prediction on the PAR-database. We found that forecasting a per-
son’s motion as an intermediary step to infer intent can help make 
correct intent predictions, especially with more complex data. We 
hope that the HRI community takes advantage of our open-source 
contributions and the insights from this work to build more robust 
intent prediction models for HRI in the future. 
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