
Real-Time Hand Tracking for Gesture-Based Tennis
Simulation

Jennifer Chen, Kate Choi, Rohan Phanse

CPSC 5800

1 Introduction

Physical sports such as tennis or pickleball provide engaging and active forms of entertain-
ment, but they often require specialized equipment, access to a sufficiently large playing
space, and appropriate environmental conditions. These constraints make casual or frequent
play difficult for many people. While virtual alternatives such as Wii Sports and virtual
reality simulations reduce the need for physical space, they still rely on specialized platforms
and accessories, which introduce additional cost and accessibility barriers.

Motivated by these limitations, our project explores an alternative solution that capital-
izes on the accessibility of virtual play to allow anyone to play simulated tennis with just a
laptop. We use computer vision to track a player’s hand movements using only a standard
webcam, eliminating the need for specialized hardware.1 By mapping natural hand gestures
to the movement of a simulated player and tennis racket, players can interact with the game
in a physically intuitive way that is analogous to real-world tennis play.

Our project extends an existing Unity-based tennis simulation that originally accepted
keyboard inputs for controlling the player. We modified this system to instead accept real-
time webcam input processed by a hand detection model. To enable intuitive control, we
defined two distinct interaction modes based on hand pose: closed-hand movement controls
lateral player movement across the court, while open-hand movement initiates racket swings
in the same lateral direction. A swing is triggered when the velocity of an open hand
surpasses a predefined threshold, allowing the direction and speed of the hand motion to
directly influence the simulated racket’s behavior.

To detect hands and distinguish between open and closed hand poses, we explored a
variety of approaches. These included training YOLO models and leveraging MediaPipe
for hand detection. We evaluated methods that directly classified open and closed hands,
as well as approaches that first detected hand bounding boxes and then applied a separate
classifier to determine hand pose. Through experimentation, we determined that MediaPipe
Hands provided the best balance of accuracy, robustness, and real-time performance for our
application.

During this process, we encountered several challenges. One challenge we faced was
finding appropriate data to train and test our models, as we needed datasets that contained

1https://github.com/rohanphanse/CPSC5800-Final

1

https://github.com/rohanphanse/CPSC5800-Final

open and closed hand poses with bounding boxes. To account for a lack of existing datasets
designed for this purpose, we found and repurposed other datasets (e.g., American Sign
Language and broader gesture datasets) to aggregate suitable data for our project.

Another significant challenge involved integrating the computer vision outputs with the
Unity game in a way that felt seamless and intuitive to the player. This required careful
design of state transitions between player movement and racket swings, as well as robust
detection of swing start and end points to avoid unintended actions or lag. Balancing
responsiveness with stability was critical to creating a smooth gameplay experience that felt
natural rather than error-prone.

Through this simulation, we aim to remove many of the constraints associated with
real-world sports and existing virtual simulations. Our goal is to enable users to engage in
tennis-like gameplay anytime and anywhere, using only a laptop with a webcam, making the
experience more accessible, affordable, and convenient while preserving the core mechanics
of the sport.

2 Related Work

Object detection and classification are foundational problems in computer vision, concerned
with identifying and localizing objects within an image. Early approaches to these tasks
relied on the use of handcrafted features, extracting relevant attributes such as edges and
colors from images with methods like SIFT [1]and histograms of oriented gradients (HOG)
[2], paired with sliding-window classifiers or region proposal mechanisms.

While successful in controlled settings, handcrafted feature approaches were computa-
tionally expensive and faced challenges when facing more complex tasks that required algo-
rithms to be invariant to factors such as scale, lighting, and viewpoint. These limitations
were addressed by the introduction of deep convolutional neural networks (CNNs), which
apply learnable filters called kernels across an image to produce sophisticated feature maps.

Current object detection and classification methods are largely shaped by region-based
and single-stage learning frameworks. Region-based methods, such as R-CNN (Region-Based
CNN) [3], utilize learned region proposals to identify likely object locations in an image,
followed by classification and bounding box refinement. These methods are able to achieve
high accuracy on object detection and classification problems, but at the cost of greater
computational complexity.

By contrast, single-stage learning models learn to perform tasks in one step, optimizing
for speed and efficiency. Key examples of single-stage models are YOLO (You Only Look
Once) [4] and SSD (Single Shot MultiBox Detector) [5], which are object detection models
that predict object bounding boxes and classes in one forward pass. The speed of single-
stage methods make them optimal choices for applications that require low latency, such as
real-time tracking.

Hand detection and classification present unique challenges compared to general object
detection, due to the high articulation of the human hand, frequent self-occlusion, and large
variation in appearance across viewpoints and lighting conditions. Single-stage detectors
such as YOLO have been widely applied to hand detection tasks due to their real-time
performance and architectural simplicity. These models can be trained to detect hands

2

directly with bounding boxes.
An alternative approach focuses on hand pose estimation through landmark prediction

rather than bounding-box classification. For example, MediaPipe Hands [6] employs a two-
stage pipeline that first detects coarse hand regions and then regresses a set of hand keypoints
representing finger joints and palm structure. Landmark-based representations enable fine-
grained reasoning about hand configuration and motion, and they have become particularly
popular in real-time interactive applications due to their temporal stability and low inference
latency.

The development of large-scale annotated datasets has played a central role in advancing
object detection and classification methods. Early breakthroughs in deep learning for vision
were enabled by ImageNet [7], a massive hand-annotated dataset of images with unprece-
dented scale and diversity that supported the emergence of CNNs such as AlexNet [8]. While
ImageNet proved instrumental for supporting object detection tasks, it lacked localization
annotations. This motivated datasets like COCO (Common Objects in Context) [9], which
includes bounding boxes and segmentation masks for objects in its images across a wide
range of everyday categories. Within COCO, hands are present in pictures of people, but
are not explicitly annotated. COCO-Hand extends the original COCO dataset by explicitly
annotating hand regions, enabling more focused study of hand detection and localization
[10]. More recent datasets such as HaGRID (HAnd Gesture Recognition Image Dataset)
[11] provide additional large-scale, labeled hand gesture data designed for detection tasks,
capturing a variety of hand poses, viewpoints, and contexts.

3 Methodology

Our system enables gesture-based control of a tennis simulation using only a standard web-
cam and real-time computer vision. The overall pipeline consists of three main components:
webcam input processing, hand pose classification, and game control within a Unity-based
tennis simulation, MinimumTennis2. MinimumTennis was designed to take keyboard presses
as input to control the player and racket in the simulation. We modified the game to in-
stead accept control signals derived from real-time hand tracking using MediaPipe Hands
on webcam input.

Video input is captured continuously from the user’s webcam and processed frame by
frame using MediaPipe Hands. MediaPipe detects the presence of hands in each frame and
estimates a set of 21 hand landmarks, including the wrist and finger joints. Based on the
configuration of these landmarks, the system classifies each detected hand as either open or
closed. This binary pose classification serves as the primary mode switch for interaction,
determining whether the user’s hand controls player movement or racket swings.

To classify whether a hand is open or closed using MediaPipe Hands, we develop a
mathematical approach detailed in Algorithm 1. The method computes an average extension
score by comparing the distance from each fingertip to the wrist with the distance from
the corresponding proximal interphalangeal (PIP) joint (i.e. the middle knuckle) to the
wrist. For open hands, the fingertip lies farther from the wrist than the middle knuckle,
producing ratios greater than one, whereas for closed hands the fingertip curls inward and

2https://github.com/open-video-game-library/MinimumTennis

3

https://github.com/open-video-game-library/MinimumTennis

Algorithm 1 Open vs. Closed Hand Classification Using MediaPipe Hands Landmarks

Require: image, open threshold = 1.1
Ensure: hand state ∈ {0 (open), 1 (closed)}
1: Get 2D hand landmarks {(xi, yi)}20i=0 from MediaPipeHands(image)
2: wrist point ← (x0, y0)
3: finger tip indices ← [4, 8, 12, 16, 20]
4: finger pip indices ← [2, 6, 10, 14, 18]
5: distance ratios ← []
6: for all (tip index, pip index) ∈ (finger tip indices, finger pip indices) do
7: finger tip point ← (xtip index, ytip index)
8: PIP refers to the Proximal Interphalangeal Joint (i.e. the middle knuckle)
9: finger pip point ← (xpip index, ypip index)
10: pip to wrist distance ← ∥finger pip point− wrist point∥2
11: if pip to wrist distance ≤ 10−6 then continue
12: end if
13: tip to wrist distance ← ∥finger tip point− wrist point∥2
14: Append tip to wrist distance / pip to wrist distance to distance ratios
15: end for
16: average extension ratio ← 1

|distance ratios|
∑

r∈distance ratios r
17: if average extension ratio ≥ open threshold then return 0
18: else return 1

becomes closer to the wrist than the PIP joint. These ratios are averaged across fingers
and thresholded at 1.1 to robustly distinguish open and closed poses, achieving the best
performance in Table 3 compared to ResNet-based classifiers.

When a closed hand is detected, the system interprets the gesture as a command for
lateral player movement. Specifically, the x-coordinate of the wrist landmark is checked to
identify which of three possible zones it lies in: the leftmost 35% of the frame, the rightmost
35% of the frame, or the central 30%. If the wrist lies in the left zone, the system continuously
issues a command to move the in-game player left across the court; if it lies in the right zone,
the player is moved right. When the wrist is positioned in the central zone, no movement
command is issued, allowing the player to remain stationary. Movement commands are
applied continuously as long as the closed hand remains within the corresponding zone.

When an open hand is detected, the system calculates the speed of detected hand motion.
Speed of the hand is computed between consecutive frames using the wrist landmark, and is
defined as the sum of the absolute differences in the x- and y-coordinates between frames. If
this value exceeds a predefined threshold of 0.05, the system triggers the tennis simulation’s
standard racket swing function, causing the player to attempt a shot. To prevent repeated
unintended swings from a single gesture, a cooldown period of 0.5 seconds is enforced after
each triggered swing, during which additional motion above the threshold does not result in
further hit commands.

4

4 Data

Our task requires binary classification of hand poses into open and closed hands. Relatively
few datasets are explicitly designed for this distinction, so we combine one such dataset
for evaluation with several larger, high-quality hand gesture datasets that we adapt for
training. We use these datasets to experiment with different model and training possibilities
to compare their performance on hand detection and classification tasks.

We use the Hand Gestures Computer Vision Dataset3 (uploaded to Roboflow by user
“hand gestures”) as our primary test set (titled Open-Closed-1k for the remainder of this
paper for clarity). This dataset contains 1,077 RGB images of hands annotated with bound-
ing boxes and labeled as either open or closed. The images depict hands with diverse skin
tones, captured from multiple viewpoints and distances, and against a wide variety of back-
grounds and lighting conditions. Although comparatively small, its realistic diversity and
provided open/closed labels make it well-suited for evaluating model performance.

For training, we rely primarily on larger gesture datasets that can be repurposed for
open/closed hand classification. The largest of these is HaGRIDv2 [12] (HAnd Gesture
Recognition Image Dataset Version 2), which contains 1,086,158 FullHD RGB images span-
ning 33 gesture classes, with bounding box annotations. HaGRIDv2 was crowdsourced from
65,977 subjects across over 100 countries, ages 18 and over, with subject-to-camera dis-
tances from 0.5–4 meters, and diverse natural lighting conditions. This closely matches our
intended deployment scenario of webcam-based hand detection. We identify four gesture
classes relevant to our task—fist, palm, stop, and stop inverted—and reclassify fist as closed
hand, and palm, stop, and stop inverted as open hand. From this subset, we construct a
balanced training set of 15,000 images (7,500 open, 7,500 closed; 18,139 bounding boxes)
and a validation set of 1,500 images (750 open, 750 closed; 1,836 bounding boxes).

We also include COCO-Hand [10], a large-scale hand detection dataset from the MS
COCO framework [13], which provides diverse real-world images with high-quality bounding
box annotations for hands. As COCO-Hand only identifies hands without distinguishing
hand poses, we use it to train and validate YOLO models to detect hands (not to classify
open/closed hands). Specifically, the subset we use contains 10,000 training images (19,075
hand bounding boxes) and 1,000 validation images (1,811 hand bounding boxes).

In addition, we draw on ASL gesture datasets, which are widely available and carefully
curated due to demand. As they are not originally labeled for open/closed classification, we
manually categorize ASL letters B, C, and F as open-hand poses, and A, E, M, N, O, S,
and T as closed-hand poses. Our first ASL dataset is MU HandImages ASL4, obtained via
the Kaggle ”American Sign Language Dataset” uploaded by Ayush Thakar. This dataset
contains 2,515 color images of 36 static ASL gestures collected from 5 individuals. Images
were captured under systematically varied lighting conditions (top, bottom, left, right, and
diffuse sources), and color-based segmentation was used to crop the hands against a black
background. Because bounding boxes are not provided, we generate them automatically
using MediaPipe Hands [14], resulting in 1,819 general hand images and 326 open/closed
hand images corresponding to our selected letters.

3https://universe.roboflow.com/hand-gestures-tytyx/hand-gestures-9iwxv
4https://www.kaggle.com/datasets/ayuraj/asl-dataset

5

https://universe.roboflow.com/hand-gestures-tytyx/hand-gestures-9iwxv
https://www.kaggle.com/datasets/ayuraj/asl-dataset

Model / Split COCO-Hand HaGRIDv2 Open-Closed-1k MU ASL HG ASL RPS Total

Images BB Images BB Images BB Images BB Images BB Images BB Images BB

Hand

Train 10,000 19,075 15,000 18,139 – – 1,819 1,819 4,618 4,618 2,629 2,629 34,066 46,280
Validation 1,000 1,811 1,500 1,836 – – – – – – – – 2,500 3,647
Test 4,000 7,716 6,000 7,169 1,077 1,077 – – – – – – 11,077 15,962

Open/Closed Hand

Train – – 15,000 18,139 – – 326 326 579 579 1,774 1,774 17,679 20,818
Validation – – 1,500 1,836 – – – – – – – – 1,500 1,836
Test – – 6,000 7,169 1,077 1,077 – – – – – – 7,077 8,246

Table 1: Dataset statistics for the single-class Hand dataset and the two-class Open/Closed Hand
dataset. Columns report the number of images and the total number of hand bounding boxes
(BB) for each dataset split. While bounding box annotations were automatically generated with
MediaPipe Hands for MU ASL, HG ASL, and RPS to increase the amount of training data, the
validation and test splits include only ground-truth bounding box annotations.

As MU HandImages ASL has limited subject diversity and tightly cropped images, we
also use a second ASL dataset, Hand Gestures5, published on Kaggle by Ashish Sharma.
This dataset includes 5,119 RGB images of the 26 ASL letters, performed by at least two
individuals across varied viewpoints, subject-to-camera distances, and backgrounds. After
annotating images with hand bounding boxes using MediaPipe Hands, the selected subsets
include 4,618 general hand images and 579 open/closed hand images.

Finally, we repurpose a Rock–Paper–Scissors dataset6 uploaded to Kaggle by Alexandre
Donciu-Julin. This dataset contains 2,717 RGB webcam images of three individuals per-
forming the rock, paper, and scissor game gestures against a uniform gray background. We
reclassify rock as closed hand and paper as open hand and generate bounding boxes with
MediaPipe Hands, yielding 2,629 general hand images and 1,774 open/closed hand images.

We aggregated images from the individual datasets to construct two training datasets,
Hand and Open/Closed Hand, as summarized in Table 1. The Hand dataset contains 34,066
images with 46,280 hand bounding boxes, all labeled under a single hand class. The Open/-
Closed Hand Dataset includes 17,679 images with 20,818 hand bounding boxes, each labeled
as either an open or closed hand. We use the Hand dataset to train single-class YOLO
models for general hand detection, and the Open/Closed Hand dataset to train two-class
YOLO for open/closed hand detection.

5 Implementation Details

Hand Detection Training. We trained all YOLO-based hand detection models using
the Ultralytics YOLO framework7. The lightweight YOLOv8n architecture (3.2M parame-
ters) was chosen to balance real-time inference requirements with strong detection accuracy.
Two training configurations were evaluated: initialization from pretrained YOLOv8-COCO
weights and training from random initialization. Models were trained for 50 epochs with
an input resolution of 640 × 640 and a batch size of 32. All remaining hyperparameters

5https://www.kaggle.com/datasets/ashish8898/hand-gestures
6https://www.kaggle.com/datasets/alexandredj/rock-paper-scissors-dataset
7https://github.com/ultralytics/ultralytics

6

https://www.kaggle.com/datasets/ashish8898/hand-gestures
https://www.kaggle.com/datasets/alexandredj/rock-paper-scissors-dataset
https://github.com/ultralytics/ultralytics

(a) COCO-Hand (b) HaGRIDv2 (c) Open-Closed-1k

(d) MU HandImages ASL (e) Hand Gestures (ASL) (f) Rock-Paper-Scissors

Figure 1: Sample images with bounding boxes from each dataset.

followed the default YOLOv8n configuration: optimization was set to optimizer="auto",
momentum to 0.937, initial and final learning rate to 0.01, weight decay to 5 × 10−4, and
warmup epochs to 3. Single-class YOLOv8n-Hand models were trained on the Hand dataset
to localize hands, while two-class YOLOv8n-Open-Closed-Hand models were trained on the
Open/Closed Hand dataset to jointly detect and classify hand poses.

Training progress was monitored using standard YOLO evaluation metrics, including
mean Average Precision at an Intersection over Union (IoU) threshold of 0.5 (mAP@50)
and mean Average Precision averaged over IoU thresholds from 0.5 to 0.95 in steps of 0.05
(mAP@50–95). Figure 2 shows the training curves for YOLOv8n-Hand and YOLOv8n-Open-
Closed-Hand models, each trained with both pretrained weights and random initialization,
including training box loss and validation mAP metrics across epochs.

Open/Closed Hand Classification Training. To evaluate open and closed hand pose
classification independently of detection performance, we trained ResNet18 and ResNet50
image classifiers by repurposing the Open/Closed Hand detection dataset for classification.
Each image was cropped to the annotated hand bounding box and treated as a classifi-
cation example across the training, validation, and test splits. We evaluated two training
configurations for each architecture: initialization from pretrained ResNet18-ImageNet-1k
or ResNet50-ImageNet-1k weights and training from random initialization. ResNet18 and
ResNet50 classifiers were trained for 20 epochs with an input resolution of 224 × 224 using

7

Figure 2: Training curves for YOLOv8n-Hand and YOLOv8n-Open-Closed-Hand models, trained
on Hand and Open/Closed Hand datasets, respectively. Two weight initialization strategies were
evaluated: training from pretrained weights and random initialization. The YOLOv8n models were
trained using the Ultralytics YOLO framework, retaining default hyperparameters while setting the
number of epochs to 50, the input size to 640, and the batch size to 32.

the Adam optimizer with a learning rate of 1 × 10−3 and weight decay of 1 × 10−4, batch
sizes of 64 and 32 respectively, and data augmentations including random resized cropping,
horizontal flipping, color jitter, and normalization during training.

6 Results

We performed a comprehensive evaluation of hand detection and open/closed hand pose
classification methods to understand their relative performance and suitability for our hand
gesture-based tennis simulation. We benchmark trained YOLO models, ResNet-based pose
classifiers, and MediaPipe Hands across multiple datasets to assess accuracy, robustness, and
generalization under various conditions, with Open-Closed-1k serving as a left-out, diverse
test set that resembles realistic gameplay conditions.

Single-Class Hand Detection. Table 2 reports single-class hand detection performance
across the COCO-Hand, HaGRIDv2, and Open-Closed-1k subsets in the Hand test dataset.
YOLOv8n-Hand performs strongly on HaGRIDv2 (mAP@50 of 99.49 and mAP@50–95 of
88.17) and achieves competitive performance on COCO-Hand and Open-Closed-1k, with
pretrained initialization providing modest but consistent gains over training from scratch. On
COCO-Hand, YOLOv8n-Hand achieves a mAP@50–95 of 31.85, substantially outperforming
MediaPipe Hands. This gap reflects MediaPipe’s two-hand detection limit and its tendency
to produce tightly cropped bounding boxes that differ from dataset annotation conventions,
whereas trained models can adapt to these box characteristics during training. The effect is

8

Model COCO-Hand HaGRIDv2 Open-Closed-1k

mAP@50 mAP@50–95 mAP@50 mAP@50–95 mAP@50 mAP@50–95

YOLOv8n-Hand 66.35 31.85 99.49 88.17 68.14 32.73
YOLOv8n-Hand (Scratch) 58.63 26.77 99.48 86.47 63.45 30.97
MediaPipe Hands 4.09 0.96 59.47 12.72 30.52 7.56
MediaPipe Hands (1.2x) 13.57 4.15 90.34 47.45 78.08 32.10

Table 2: Hand detection performance across single-class hand datasets. YOLOv8n-Hand (Scratch)
denotes training the model from random initialization rather than from pretrained YOLOv8n-
COCO weights. MediaPipe Hands (1.2x) denotes resizing all predicted bounding boxes by a factor
of 1.2.

most pronounced on COCO-Hand, which contains multiple small or background hands and
falls outside MediaPipe’s intended close- to medium-range operating distance.

To help mitigate this mismatch between MediaPipe’s tightly cropped bounding boxes
and the looser ground-truth annotations used in the datasets, we additionally expanded
MediaPipe-predicted bounding boxes by a factor of 1.2 in both width and height. This
simple rescaling substantially improves IoU alignment, yielding large gains on HaGRIDv2
(mAP@50 from 59.47 to 90.34 and mAP@50–95 from 12.72 to 47.45) and the best mAP@50
performance on Open-Closed-1k of 78.08.

Open/Closed Hand Classification. Open/closed hand pose classification accuracy is
shown in Table 3. To isolate pose classification from detection performance, ResNet-based
classifiers were evaluated on cropped hand regions. ResNet18 achieves the best performance
among the ResNet-based classifiers (92.37% on HaGRIDv2 and 81.34% on Open-Closed-1k),
slightly outperforming the deeper ResNet50 across both subsets, with pretrained initializa-
tion yielding modest improvements over training from scratch. MediaPipe Hands, which is
not designed to operate on extremely close-range hand crops, was instead evaluated on full
images containing a single annotated hand. This applied to the majority of the HaGRIDv2
test set (4,831 of 6,000 images) and all images in Open-Closed-1k. The approach described
in Algorithm 1 was used to compute a score from the MediaPipe wrist, fingertip, and knuckle
landmarks to classify the hand as open or closed.

Because MediaPipe Hands includes an internal hand detection stage, it may fail to pro-
duce a prediction for some images. We therefore report two evaluation protocols: a strict
setting that treats missing detections as incorrect predictions, and a more generous setting
that excludes such cases. Across both datasets, MediaPipe Hands achieves the highest clas-
sification accuracy under both protocols, attaining high performance in the strict setting
(94.99% on HaGRIDv2 and 84.22% on Open-Closed-1k) and near-perfect accuracy when
MediaPipe Hands successfully detects a hand (99.87% on HaGRIDv2 and 99.80% on Open-
Closed-1k).

Open/Closed Hand Detection. Two-class open/closed hand detection results are shown
in Table 4. On HaGRIDv2, YOLOv8n-Open-Closed-Hand achieves strong performance
(mAP@50 of 99.46 and mAP@50–95 of 88.46), with pretrained initialization providing mod-
est but consistent gains over training from scratch. As in the single-class setting, performance

9

Model HaGRIDv2 Open-Closed-1k
Accuracy Accuracy

ResNet18 92.37 81.34
ResNet18 (Scratch) 91.92 80.78
ResNet50 91.53 78.92
ResNet50 (Scratch) 90.53 76.04
MediaPipe Hands (Missing = Wrong) 94.99 84.22
MediaPipe Hands (Missing = Ignored) 99.87 99.80

Table 3: Hand classification performance across open/closed hand datasets with two classes.
ResNet18 (Scratch) and ResNet50 (Scratch) refer to training from random initialization rather
than from pretrained ResNet18-ImageNet-1k and ResNet50-ImageNet-1k weights, respectively. The
ResNet models were evaluated by classifying cropped hand bounding boxes from the Open/Closed
Hand test dataset. MediaPipe, which is not intended to be used at extremely close ranges, was
instead evaluated on full images from the Open/Closed Hand test dataset containing a single bound-
ing box (4,831 of 6,000 images in HaGRIDv2 and all 1,077 images in Open-Closed-1k). MediaPipe
Hands (Missing = Wrong) treats cases without hand detections as incorrect predictions, whereas
MediaPipe Hands (Missing = Ignored) excludes such cases from the evaluation.

Model HaGRIDv2 Open-Closed-1k

mAP@50 mAP@50–95 mAP@50 mAP@50–95

YOLOv8n-Open-Closed-Hand 99.46 88.46 63.80 35.51
YOLOv8n-Open-Closed-Hand (Scratch) 99.43 87.26 58.87 34.02
MediaPipe Hands 52.86 12.92 47.12 16.59
MediaPipe Hands (1.2x) 79.43 43.41 79.03 41.34

Table 4: Hand detection performance across open/closed hand datasets with two classes.

decreases on Open-Closed-1k for all methods, reflecting the added difficulty of localizing and
classifying hand poses on a left-out, realistic test set. MediaPipe Hands exhibits lower mAP
under standard evaluation due to the same bounding box definition mismatch observed in
single-class detection. Expanding bounding boxes produced by MediaPipe Hands by a fac-
tor of 1.2 improves IoU alignment with the ground-truth annotations, yielding substantial
gains on both datasets and the best performance on Open-Closed-1k (mAP@50 of 79.03 and
mAP@50–95 of 41.34).

7 Discussion

Through this project, we gained practical insight into the trade-offs involved in deploying
computer vision models for real-time interactive systems. Although we explored a range
of hand detection and classification approaches, including custom-trained YOLO models
and standalone image classifiers, our experiments ultimately demonstrated that MediaPipe
Hands was the most suitable choice for our application. While MediaPipe does not achieve
the highest detection mAP under standard benchmark evaluations—largely due to differences
in bounding box conventions—it consistently delivered the best qualitative performance in
gameplay scenarios and the strongest results on the left-out Open-Closed-1k test set for pose
classification.

10

One of the primary challenges faced was acquiring suitable training data for our models.
Given the design of our game pipeline, we required datasets with instances of open and closed
hand poses in a variety of conditions and viewpoints, with labeled bounding boxes around
hands. As few existing datasets are directly designed for our task, existing datasets were
repurposed, such as subsets of American Sign Language and general hand gesture datasets,
manually reclassifying images to align with our open- and closed-hand classes. In cases where
bounding box annotations were missing, we used MediaPipe to automatically generate hand
bounding boxes as part of our preprocessing pipeline.

Another major challenge we encountered was translating hand motion into intuitive and
reliable game controls. Our initial proposal envisioned directly mapping hand velocity and
direction to racket and ball physics. However, the constraints of the existing tennis simu-
lation, combined with the limited range of motion allowed by a webcam-based, stationary
setup, made such a direct mapping impractical. Real-world tennis involves large, continu-
ous body movements and fine-grained control over racket orientation, whereas our system
operates within a constrained field of view and relies on simplified gestures. Therefore, we
revised our interaction design to have two discrete control modes, using closed-hand gestures
for lateral player movement and open-hand gestures for swings.

Our work also has several limitations. First, the system assumes a single visible hand
and does not explicitly handle occlusions, multiple users, or multiple hand instances (even
those that do not belong to the user). Additionally, our evaluation focused on accuracy
and our own preliminary qualitative gameplay experience rather than formal user studies,
leaving open questions about how learnable, fatiguing, or playable the game is long-term.

Despite these limitations, this project demonstrates that accessible, webcam-based com-
puter vision can support engaging and intuitive game interaction. Our results highlight the
practical advantages of using lightweight, landmark-based models such as MediaPipe for
real-time interaction, particularly in applications where low latency is more critical than
fine-grained pose estimation. Future extensions of this project could explore integrating
multiple-hand interaction mechanics, selective recognition of a player’s hand when others are
visible, or further integration between real-world velocity and direction with game physics
to increase realism and expressiveness. More broadly, this project underscores the potential
of computer vision–driven interaction to lower barriers to participation in virtual sports,
games, and interactive experiences.

11

References

[1] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[2] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

[3] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[4] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[5] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21–37. Springer, 2016.

[6] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George Sung,
Chuo-Ling Chang, and Matthias Grundmann. Mediapipe hands: On-device real-time
hand tracking. arXiv preprint arXiv:2006.10214, 2020.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755. Springer, 2014.

[10] Supreeth Narasimhaswamy, Zhengwei Wei, Yang Wang, Justin Zhang, and Minh
Hoai. Contextual attention for hand detection in the wild. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.
https://openaccess.thecvf.com/content_ICCV_2019/papers/Narasimhaswamy_

Contextual_Attention_for_Hand_Detection_in_the_Wild_ICCV_2019_paper.pdf.

[11] Alexander Kapitanov, Karina Kvanchiani, Alexander Nagaev, Roman Kraynov, and
Andrei Makhliarchuk. Hagrid–hand gesture recognition image dataset. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 4572–
4581, 2024.

12

https://openaccess.thecvf.com/content_ICCV_2019/papers/Narasimhaswamy_Contextual_Attention_for_Hand_Detection_in_the_Wild_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Narasimhaswamy_Contextual_Attention_for_Hand_Detection_in_the_Wild_ICCV_2019_paper.pdf

[12] Anton Nuzhdin, Alexander Nagaev, Alexander Sautin, Alexander Kapitanov, and Ka-
rina Kvanchiani. Hagridv2: 1m images for static and dynamic hand gesture recognition.
arXiv, 2024. https://arxiv.org/abs/2412.01508.

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in
context. In Computer Vision – ECCV 2014, pages 740–755. Springer International
Publishing, 2014. https://arxiv.org/abs/1405.0312.

[14] Esha Uboweja, David Tian, Qifei Wang, Yi-Chun Kuo, Joe Zou, Lu Wang, George Sung,
and Matthias Grundmann. On-device real-time custom hand gesture recognition. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, pages 4273–4277, October 2023. https://arxiv.org/abs/2006.10214.

8 Appendix

8.1 Instructions for Running Project Code

Our modified MinimumTennis game is available as a Windows build of the Unity Project.8

We are only able to provide a Windows build, because there are some security issues in
making a MacOS build from a Windows device.

To build and play the simulation on your device, follow these steps:

1. Unzip the folder, navigate and run MinimumTennis.exe (There may be a pop-up with
“Windows protected your PC.” To run the simulation, press “More Info” and “Run
Anyway”.)

2. Run mediapipe revised.py from the code repository in our submission.9 This inter-
prets webcam motion into readable commands for the simulation.

(a) Follow the README instructions to set up a virtual environment and download
the required packages.

(b) Note: The MediaPipe pop-up will lag if there is not an active game, as it will
try to send messages to the Unity web socket, which is inactive unless a match is
running.

3. Select “Normal Mode.” Continue with the default settings for character sprites and
“Game Settings.”

4. The game will begin automatically with the player’s automatic serve.

(a) Note: Because of compatibility issues with the Unity project that we used for
the simulation, the “restart” button will not work. If you want to play another
match, close and reopen the application to play again.

8https://github.com/ChenJieNi2004/MinimumTennis/releases/tag/v1.0
9https://github.com/rohanphanse/CPSC5800-Final

13

https://arxiv.org/abs/2412.01508
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2006.10214
https://github.com/ChenJieNi2004/MinimumTennis/releases/tag/v1.0
https://github.com/rohanphanse/CPSC5800-Final

8.2 Game Demo

A demo of our game can be found at this link: https://youtu.be/DDZb2j8T5_Y

14

https://youtu.be/DDZb2j8T5_Y

	Introduction
	Related Work
	Methodology
	Data
	Implementation Details
	Results
	Discussion
	Appendix
	Instructions for Running Project Code
	Game Demo

