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Abstract

Vision transformers are growing in popularity due to their powerful architecture
and extensive applicability. In mission-critical systems, ensuring robustness to
adversarial inputs becomes crucial for upholding safety and preventing catastrophic
failures. In this project, we analyze the robustness properties of well-known
vision transformers by evaluating the performance of several defense strategies
with regards to an adversarial dataset. Our results demonstrate how different
architectures respond to defensive paradigms, informing future work in the space
on how to best make these vision transformers more robust.

1 Introduction

1.1 Problem Definition

Computer vision is one of the most fundamental use cases of artificial intelligence, with important
applications across a variety of domains from healthcare to transportation to manufacturing. Because
computer vision systems are so widespread, it is crucial to ensure safety in these visual systems and
robustness against adversarial inputs.

One of the biggest innovations in this space has been the introduction of transformers, which have
recently gained ground in the vision scene as well. Vision transformers (ViT) are useful with the
advent of more data, since these architectures rely on fewer assumptions and can learn from large
training datasets [[13]]. Thus, it is extremely important to evaluate the robustness of these models to
ensure safety and trust in real-world applications, which often suffer from data drift.

In this project, we study how large, pretrained Vision Transformers respond to gradient-based and
patch-based adversarial attacks on images drawn from ImageNet-1K, and how different defense
strategies affect both vulnerability to these attacks and accuracy on clean images. Our adversarial
dataset is constructed using canonical perturbation attacks such as FGSM, as well as ViT-specific
patch-based attacks, and we use it to evaluate DINOv2-based Vision Transformers and closely related
variants. Building on this setup, we analyze three complementary defense paradigms: feature-level
defenses such as robustness tokens and parameter-level defenses such as adversarial training, which
we evaluate primarily against gradient-based attacks, and input-level patch-based transformations,
which we evaluate specifically against patch-based attacks, in order to evaluate the extent to which
these defenses are effective and what tradeoffs they induce in clean-image accuracy.

1.2 Relevance to Trustworthy Deep Learning

Vision Transformers are now widely deployed in settings where model failures carry real con-
sequences, so understanding their behavior under adversarial perturbations is central to building
trustworthy systems. Even small, engineered changes to an input can cause large shifts in model
predictions, and existing work shows that ViTs can fail in ways that are qualitatively different from
CNNSs. Our project studies this reliability question directly: we construct a large adversarial dataset,
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evaluate several ViT architectures under gradient- and patch-based attacks, and compare the robust-
ness gains from various defense families. By examining how these defense strategies behave across
model scales and attack strengths, we aim to clarify which approaches meaningfully improve ViT
robustness and where current methods still break down.

1.3 Datasets

In this project, we used the ImageNet-1k datasetﬂ a subset of ImageNet [3] used in the ILSVRC
2012 challenge [11]]. ImageNet-1k is an image classification dataset that spans 1,000 object classes
and contains 1,281,167 training images, 50,000 validation images and 100,000 test images.

We conducted an exploratory data analysis on ImageNet-1K by analyzing the first 10,000 samples
in the training dataset, which covers all 1,000 classes of ImageNet-1k (Appendix [7.3). We also
constructed custom adversarial testing sets as detailed in Section [4.1]

2 Related Work

Our robustness evaluation follows standard adversarial benchmarks. FGSM [6] and PGD [9]] remain
the canonical gradient-based attacks used to probe model vulnerability, and PGD-based adversarial
training [9] serves as the standard baseline defense. These methods provide the core attack and
defense protocols we use to evaluate and compare robustness across Vision Transformer architectures
in our study.

Vision Transformers (ViTs) represent a paradigm shift in computer vision, applying the self-attention
mechanism from natural language processing to image analysis by treating images as sequences of
patches rather than spatial grids. As the computer vision community embraced these architectures
following their introduction by Dosovitskiy et al. [Sl], researchers began investigating how these
fundamentally different models respond to adversarial attacks. Aldahdooh et al. [1]] conducted the
first systematic robustness comparison between Vision Transformers and CNNs, revealing that ViTs
demonstrate superior resilience under various norm-bounded attacks and adaptive attacks, though
preprocessing defenses like blurring and JPEG compression are less effective for ViTs than for CNNG.
This finding motivated our focus on Vision Transformers rather than traditional CNNss, as it suggested
that transformer architectures possess unique robustness properties worthy of deeper investigation.
However, the emergence of large-scale, self-supervised Vision Transformers like DINOv3 [12] has
created new challenges that existing robustness research has not adequately addressed. DINOv3’s
7-billion parameter scale and self-supervised training methodology represent a significant departure
from the smaller, supervised models previously studied, creating a critical gap in our understanding
of modern ViT robustness.

Recent work has begun developing both ViT-specific attack and defense mechanisms that exploit the
unique architectural properties of transformers. On the attack side, Liu et al. [8] demonstrated that
Vision Transformers are vulnerable to attention-based adversarial patch attacks, where small patches
covering only 1-3% of the input image can degrade model accuracy to 0% by manipulating attention
mechanisms. Cools et al. [2] further showed that adversarial patches designed for CNNs transfer
effectively to ViTs, with attack success rates ranging from 40.04% to 99.97% across different ViT
architectures. Kashefi et al. [7] categorize ViT explainability methods into attention-based, pruning-
based, and inherently explainable approaches. On the defense side, Pulfer et al. [10] introduced
Robustness Tokens, a method that fine-tunes additional learnable tokens rather than the entire model,
achieving significant robustness improvements with minimal computational overhead. Similarly,
Doan et al. [4] pioneered patch processing defenses specifically for ViTs, demonstrating that the patch-
based input representation can be leveraged through techniques like PatchDrop and PatchShuffle,
which exploit the differential response of clean and backdoored inputs to patch manipulations
before positional encoding. These transformer-native approaches represent a paradigm shift from
traditional adversarial methods, offering both new attack vectors and computationally efficient
defense alternatives particularly suited for large-scale models. Our project builds directly upon these
innovations by systematically evaluating robustness mechanisms across different model scales and
architectures, with particular emphasis on understanding their effectiveness when applied to modern
large-scale transformers like DINOv3.

"https://huggingface.co/datasets/ILS VRC/imagenet- 1k



3 Methods

3.1 Architecture and Implementation

Our system is organized around three main components: adversarial data generation, model defenses,
and a centralized evaluation pipeline (Figure[I)). We start from large pre-trained Vision Transformer
models (e.g., DINOvV2) trained on ImageNet. We assume white-box access to these models, which
allows us to backpropagate through them and compute gradients for attack generation.

Adpversarial Data Generation. Clean ImageNet samples are first passed through a modular attack
suite consisting of gradient-based attacks and patch-based attacks. Each attack is implemented as a
drop-in module that operates on batches of images and returns perturbed images constrained within
an ¢, or ¢5 ball (depending on the attack). To handle the memory constraints of working with
ImageNet-scale data, we adopt a shard-based pipeline: we stream in shards of the dataset, generate
adversarial examples for each shard on the cluster GPUs, upload the resulting adversarial batches to
storage, and then free the shard from memory. The outputs these attacks comprised the adversarial
dataset.

Patch Based Attacks. We implement a suite of localized patch-based attacks tailored to the patch-
wise input structure of Vision Transformers, inspired respectively by adversarial token attacks, patch
perturbation attacks, and the Patch-Fool framework. Using pretrained ViT-family models from
Hugging Face, including a standard ViT, a distilled DeiT, and a DINOv2 checkpoint, we define a
shared configuration that specifies the relative patch area, number of gradient steps, and step size,
and use helper routines to compute a square patch size and sample patch locations on each correctly
classified ImageNet-1K image. Given a batch of normalized pixel tensors and labels, we apply three
related attack routines. The token attack learns an explicit adversarial patch tensor for each image: at
every step it copies this patch into a sampled box on the image, runs the model, and updates the patch
by taking sign-gradient steps on the cross-entropy loss before finally writing the optimized patch
back into the image. The patch-perturbation attack instead treats the entire image as the optimization
variable but applies a binary mask so that projected-gradient updates are confined to a single randomly
chosen patch region while the rest of the image remains unchanged. The Patch-Fool-style attack also
optimizes in pixel space, but at each iteration it scans a grid of non-overlapping patches, identifies the
patch with the largest gradient norm, and applies a masked sign-gradient update only on that most
sensitive patch. In all three cases, we clamp the perturbed images back to a valid pixel range after
each update, producing localized adversarial examples in which only a small contiguous region has
been modified. As a reference baseline for these experiments, we always evaluate each model on
the corresponding clean, unpatched images from the same ImageNet-1K subset before applying any
patch attacks.

Defenses. On top of the pre-trained ViTs, we implement three conceptually distinct defenses, as
described below:

* Robustness tokens: a feature-level defense where we augment the ViT input sequence
with learned robustness tokens. These tokens are trained to absorb or attenuate adversarial
perturbations in the representation space, while keeping the original backbone weights
largely intact.

* Adversarial training: a parameter-level defense where we fine-tune the ViT on adversarial
examples. Our implementation focuses on FGSM to solve the inner-max problem, with an
€~ 0.03.

* Image transformations (incl. patch-based defenses): an input-level defense where we
apply deterministic or stochastic transformations (e.g., Gaussian blurring, JPEG compres-
sion, and patch-based masking) to the input image prior to feeding it into the ViT. For global
transformations, we apply Gaussian blur and JPEG compression by denormalizing model
inputs to uint§ RGB images, running either a fixed-kernel Gaussian blur or a lower-quality
JPEG encode—decode step, and then renormalizing the results back into the model’s input
space. To target localized adversarial behavior, we introduce patch masking defenses: for
each image, we compute a patch size from a chosen patch ratio, sample a random patch
box using the same routine as in our patch attacks, and either overwrite that region with



zeros in normalized space or replace it with a blurred version obtained by denormalizing,
applying a small Gaussian blur, and renormalizing the patch. Together, these defenses allow
us to compare how global image transformations and localized patch processing affect the
robustness of ViT, DeiT, and DINOv2 models to the patch-based attacks described above.

Each defense produces a defended model variant, all of which share the same underlying architecture
but differ in how they process or adapt to adversarial inputs. Note that we treat patch-based defenses
separately, since that does not generate a new model (it is simply a pre-processing step).

Evaluation Pipeline. The defended and baseline models are evaluated on the same concatenated
adversarial dataset, as well as on a held-out set of clean images. The evaluation module computes
standard performance metrics (top-1 accuracy) alongside robustness-oriented diagnostics (e.g., attack
success rate by €) and sensitivity analyses. For explainability, we extract attention maps and related
internal signals from the ViTs to study how different defenses alter the model’s focus under attack.
This centralized, standardized evaluation pipeline is key to making the comparison between defenses
trustworthy and reproducible.
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Figure 1: Workflow showing how our adversarial dataset is generated, how our models are defended,
and our evaluation pipeline.

4 Results

4.1 Dataset Generation

To construct our adversarial dataset, we developed modular code that supports gradient-based and
patch-based attacksﬂ The main challenge was GPU memory: the cluster GPUs cannot simultaneously
store large portions of ImageNet, generate adversarial examples, and buffer them for upload. To
address this, we implemented a shard-based pipeline. We download a shard of ImageNet, run our
attacks, upload the adversarial examples once we reach a threshold, then delete the shard and proceed
to the next one. This yields an efficient, streaming-style pipeline for adversarial data generation.

We also incorporated several optimizations. Our dataset includes FGSM examples for a range of €
values (e € {0.1,0.3,0.5}). For some values of €, an adversarial example may fail to flip the model’s
prediction; in such cases, we do not include the example in the adversarial dataset, since it does not
meaningfully test robustness. Similarly, we discard base images that are already misclassified, as our
focus is on how the model adapts to genuinely adversarial perturbations rather than to clean errors.

Our final dataset is hosted on HuggingFaceﬂ which makes it easy for group members to run parallel
experiments with different model defenses. In the current version (generated with 100k examples),
we achieve an overall attack success rate of 91.2%. Interestingly, under our pre-filtering conditions,
the success rate decreases as we increase €. This is counterintuitive relative to standard FGSM
behavior, but there are a few plausible explanations. First, DINOv2 may be inherently robust as a
Vision Transformer, so larger perturbations at higher e values become visually obvious and are more
easily rejected by the model. Second, our clamping procedure may cause larger gradient steps to
saturate pixel values, effectively reducing the impact of the perturbation compared to smaller, more
nuanced e steps.

?Preliminary data loading code: https:/github.com/areebg9/cpsc4710-final/tree/fgsm
*Huggingface repository: https://huggingface.co/cpsc-5710-final-vit-robustness
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Figure 2: Attack success rate by epsilon (¢). Note that our success rate reduces as e value increases.

Below, we show an example where an attack with a smaller € = 0.1 successfully flips the prediction,
while a larger € = 0.5 does not.
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Figure 3: Example of e-scaled attacks. The larger e introduces more visible noise, potentially making
the perturbation easier for the model to reject as adversarial.

4.2 Adversarial Training Results

Our first defense is using adversarial training. We conduct an ablation study for adversarial training on
FGSM-generated examples by comparing three configurations: a non-robust baseline (no adversarial
training), an adversarially trained model where we unfreeze only the last 4 transformer blocks, and a
fully unfrozen adversarially trained model. In the “Unfreeze (4 blocks)" setting, we update 7.9M
out of 22.8M parameters (~34.6%), whereas in “Unfreeze (all)" we fine-tune the entire ViT. In this
experiment, we finetune on top of facebook/dinov2-small-imagenetik-1-layer(Table[).

Attack Baseline Unfreeze (4 blocks) Unfreeze (all)

ID 80.2 68.8 69.1
FGSM 33 20.6 45.8
PGD 0.0 0.8 43.0

Table 1: Adversarial training results for DINOv2. Numbers represent percent accuracy scores.

The baseline model is effectively non-robust; FGSM accuracy drops to 80.2% on clean (ID) data to
3.3%, and PGD is strong enough to drive accuracy to 0%. Adversarially training while unfreezing
only the last 4 blocks buys some robustness (FGSM accuracy improves to 20.6%, PGD to 0.8%), but
the model remains extremely fragile and looses general accuracy. This suggests that updating a thin
slice of the network (at least, the final layers of this ViT) is not enough to substantially reshape the
decision boundary.

Fully unfreezing the backbome during FGSM-based adversarial training leads to much larger gains.
FGSM accuracy increases from 3.3% to 45.8%, and PGD accuracy from 0.0% to 43.0%, while clean
accuracy only drops from 80.2% to 69.1%. Intuitively, training on FGSM examples encourages the
model to smooth its decision boundary in feature space along the directions of largest loss gradients.



Since PGD is a stronger, multi-step version of FGSM that follows similar gradient directions, this
local smoothing transfers to PGD as well, so robustness improves on both attacks even though we
only train on FGSM.

Overall, these results show that (i) without adversarial training, small and targeted perturbations
can almost completely break a high-accuracy DINOV2 classifier, and (ii) achieving non-trivial
robustness requires updating at least a substantial fraction of the backbone parameters, not just a
small classification head or a few blocks, even at the cost of a modest drop in clean accuracy.

4.3 Robustness Token Results

We conducted a series of robustness token training and evaluation runs for DINOv2 and DINOv3
modelﬂ These runs were made by modifying the code from the original study to conform to our
experiment parameters. Further training details such as loss curves and hyperparameters are included

in Appendix

We conducted an ablation study to investigate three factors: 1) the effect of the number of robustness
tokens, 2) comparisons between DINOv2 models of various sizes, and 3) the benefit of using a custom
linear head.

To study the impact of the number of robustness tokens, we trained DINOv2-ViT-Base/14 with 1,
5, 10, and 20 robustness tokens, respectively. To assess how robustness token effectiveness varies
with model scale, we also trained DINOv2-ViT-Small/14 and DINOv2-ViT-Large/14 models with 10
robustness tokens. The corresponding training loss curves are presented in Figure

The total training loss is defined by Pulfer at al. [10] as £ = L;,, + Laqv, Where the invariance
loss L;y,, is the cosine similarity between the embeddings for the original and robust model on clean
inputs, and the adversarial loss L4, is the cosine similarity between the original model’s embeddings
for clean inputs and the robustness-token model’s embeddings for adversarial inputs generated with
Projected Gradient Descent (PGD). During training, the robustness tokens are optimized to maximize
the loss (up to 2) to improve the backbone’s invariance and robustness to adversarial inputs. As
shown in Figure [7, DINOv2 models across various sizes (ViT-Small, ViT-Base, Vit-Large) converged
to similarly high final loss values (1.76-1.82).

After training the robustness tokens, we trained a custom linear classification head for each backbone
using 100k images from ImageNet-1k over 3 epochs, with robustness tokens present as register
tokens. For comparison, we also trained "base" linear heads on the corresponding backbone models
without robustness tokens, which serve as non-robust baselines. Because the robustness-token training
objective explicitly encourages embedding similarity with the base model, we hypothesized that
using the "base" linear head would remain effective, although a custom head should still yield the
best performance. Accordingly, we evaluated both the base head and custom head for backbones with
robustness tokens across all model sizes.

As shown in Table [2] robustness tokens consistently improve feature robustness and adversarial
accuracy across all model sizes while largely preserving clean accuracy. Varying the number of
robustness tokens has little effect on robustness, with robust classification accuracy remaining
similar (42.3-46.4) among tested DINOv2-ViT-Base/14 models. Robustness and accuracy appears to
scale with model size, with DINOv2-ViT-Large/14 achieving the strongest results overall. Finally,
while custom linear heads consistently outperform base heads in robust accuracy, the gap is small,
suggesting that robustness-token training preserves compatibility with the original embedding space.

4.4 Patch-Based Attacks and Defenses Results

We evaluate three gradient-based patch attacks (token, patch-perturbation, and patch_fool) together
with image and patch-level preprocessing defenses on pretrained ViT, DeiT, and DINOv2 models.
For each model, we first construct a set of images that are correctly classified under clean inputs
with no defenses, so that subsequent accuracy values directly reflect robustness rather than baseline
errors. Starting from these correctly classified, clean images for each model, we generate adversarial
examples for each attack at a fixed patch ratio and number of gradient steps, and re-evaluate the same

*Our fork of Pulfer et al’s [10] robustness token repository: https://github.com/rohanphanse/robustness-tokens



Feature Robustness Classification

Model # Tokens Cosine Similarity MSE Robust Acc. Clean Acc.
DINOv2-ViTS 14 0 0.08 9.77 0.3 75.6
DINOV2-ViTS 14-base-head 10 0.93 0.63 26.3 73.7
DINOv2-ViTS/14 10 0.93 0.63 30.2 74.3
DINOv2-ViTB/14 0 0.04 5.06 0.8 80.1
DINOv2-ViTB/14 1 0.89 0.53 42.3 79.3
DINOv2-ViTB/14 5 0.91 0.43 46.4 79.7
DINOv2-ViTB/14-base-head 10 0.92 0.41 42.5 79.7
DINOv2-ViTB/14 10 0.92 0.41 45.2 79.2
DINOv2-ViTB/14 20 0.92 0.38 46.6 79.6
DINOv2-ViTL/14 0 0.06 3.77 1.5 82.5
DINOvV2-ViTL/14-base-head 10 0.90 0.34 58.7 82.3
DINOv2-ViTL/14 10 0.90 0.34 60.4 82.4

Table 2: Results from our ablation study, modifying the number of trainable robustness tokens and
the type of classification head (base vs. custom). Attacks were generated with PGD upon the base
non-robust model. Evaluation was performed upon a test set of 5,005 images from ImageNet-1k.
Cosine similarity and mean squared error (MSE) are computed between the base (non-robust) model’s
embeddings on clean inputs and the tested’s embeddings model on adversarial inputs.

model on the attacked images under four defenses: none, Gaussian blur, JPEG compression, patch
masking with blur, and patch masking with zero fill.

4.4.1 Maetrics and Evaluation

For each model—attack—defense combination, we report the accuracy and the induced attack success
rate (ASR), defined on the filtered set as ASR = 1 — accuracy. The clean, undefended configuration
on this filtered set achieves an accuracy of 1.00 for all three models because we constructed the set of
images such that the clean, undefended model classifies all of these images correctly. Therefore, any
reduction in accuracy directly measures robustness degradation due to the presence of an attack or
images being missclassified due to a defense transformation. Entries in Table [ are sorted by model,
then attack, then defense in a fixed order (attacks: Clean, token, patch_perturbation, patch_fool
and defenses: None, blur, compress, patch_mask_blur, patch_mask_zero).

The effects of various attack and defense combinations on model accuracy and ASR are shown in
Figures ] and [5|respectively.

4.4.2 Results

Across all three models, patch_fool is the strongest attack: with no defenses, accuracy drops from
1.000 on the clean-correct set to 0.576 on DeiT, 0.340 on DINOv2, and 0.292 on ViT (ASR 0.424,
0.660, and 0.708), substantially worse than the token and patch-perturbation attacks in the same
setting. Standard input-level defenses are highly effective at countering these attacks: Gaussian
blur and JPEG compression consistently recover a large portion of the lost accuracy, especially for
patch_fool (for example, on DINOv2, patch_fool accuracy increases from 0.340 to 0.780 with
blur and 0.916 with compression, and on ViT from 0.292 to 0.616 and 0.632), while still maintaining
high clean accuracy around 0.95-0.97. In contrast, the local patch masking defenses leave clean
accuracy almost unchanged but provide only modest robustness gains against patch_fool (e.g.,
DINOv2 remains near 0.35 accuracy and ViT below 0.35 under masking), indicating that simple
global transformations such as blur and compression are more effective than blind patch masking for
mitigating gradient-based patch attacks on Vision Transformers.

These trends align with how attacks and defenses interact with Vision Transformer self-attention. The
patch_fool attack explicitly optimizes a localized patch to hijack attention, creating a small but
highly salient region that dominates global self-attention and overwrites evidence from the rest of the
image, whereas token and patch-perturbation attacks produce more diffuse, less attention-aligned
perturbations that the model can partially ignore. Gaussian blur and JPEG compression act as global
low-pass filters that smear or denoise the high-frequency patterns introduced by such localized
patches, reducing their ability to monopolize attention and shifting weight back to the clean context,



while patch masking is weaker because it removes only a single random patch and often misses the
true adversarial region.

Impact of Attacks and Defenses on Model Accuracy
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Figure 4: Impact of Attacks and Defenses on Model Accuracy
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Figure 5: Impact of Attacks and Defenses on ASR

4.5 Overall Evaluation

Across all models, we treat the undefended DINOv2 model as our baseline: accuracy stays near 30%
for every e value, reflecting almost no adversarial robustness. Both adversarially trained variants
perform well at small perturbation strengths (above 80% at ¢ = 0.1), but their performance drops
sharply as € increases, falling into the mid—30% range by € = 0.5. Notably, unfreezing only the last
four blocks behaves very similarly to full-model fine-tuning—slightly worse at low e, slightly better
at higher ¢, suggesting that partial fine-tuning already captures most of the gains for this FGSM-only
attack setting.



The robustness-token models show a different pattern. While they start below adversarial training at
€ = 0.1, they degrade much more slowly as the perturbation grows. ViT-B with robustness tokens
remains between 50-70% across all €, and ViT-L is consistently the strongest model at higher attack
strengths, reaching 71.5% at e = 0.3 and 65.5% at ¢ = 0.5. Within the robustness-token family,
performance scales cleanly with backbone size (ViT-L > ViT-B > ViT-S). Overall, adversarial
training gives the best robustness for small perturbations, whereas robustness tokens (especially on
larger backbones) offer more stable performance as attack strength increases.

FGSM ¢ Baseline Adyv. Train (4 blocks) Adyv. Train (all) RT ViT-S RT ViT-B RT ViT-L

0.1 32.04 80.84 82.93 52.99 70.06 79.94
0.3 27.33 63.96 62.16 44.74 59.16 71.47
0.5 30.33 35.74 34.23 43.24 53.15 65.47

Table 3: FGSM accuracy (percent) across models and attack strengths on our adversarial dataset.

Accurac, y by Epsilon Value Overall Accurac y

72.3%

Baseline Unfreezed (4 blocks)  Unfreezed (All)  Robustness (Vits)  Robustness (Vith)  Robustness (Vitl)
Model

Figure 6: Example of e-scaled attacks. The larger € introduces more visible noise, potentially making
the perturbation easier for the model to reject as adversarial.

5 Conclusion

5.1 Summary and Findings

Overall, our experiments confirm that standard pre-trained ViTs are highly vulnerable to both gradient-
based and patch-based attacks: the undefended DINOvV2 baseline collapses to roughly 30% accuracy
under FGSM across all € values, and patch-based attach such as patch_fool can drive accuracy
below 35% on ViT, DeiT, and DINOv2 despite perfect performance on the same images in the
clean setting. Adversarial training does help, but only once a substantial fraction of the backbone is
unfrozen: updating the last four transformer blocks already yields noticeable robustness gains, while
fully unfreezing the model produces much larger improvements under FGSM and PGD, at the cost of
a moderate drop in clean accuracy.

Robustness tokens offer a more parameter-efficient alternative. Across all tested DINOv?2 sizes, adding
tokens markedly improves robustness and feature invariance while keeping clean accuracy close to
the original models, and performance scales cleanly with backbone size, with ViT-L consistently the
strongest under stronger attacks. For patch-based threates, simple global transforms such as Gaussian
blur and JPEG compression and surprisingly effective at recovering accuracy from patch_fool-
style attacks across all architectures, whereas blind patch masking provides only limited gains and
sometimes even hurts in specific settings. Taken together, these results suggest that (i) ViTs need
explicit defenses to be reliable under adversarial perturbations, (ii) both adversarial training and
robustness tokens can improve robustness but operate in different regimes (e.g. small v. larger
perturbations), and (iii) inexpensive input-level defenses such as patch-based defenses can prove to
be a strong complement to these strategies.

Our code can be found here: https://github.com/areebg9/cpsc4710-final, Our Hugging
Face can be found here: https://huggingface.co/cpsc-5710-final-vit-robustness.
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5.2 Challenges and Limitations

Currently, our dataset is limited to FGSM-based attacks. Furthermore, our adversarial training
is performed with FGSM for the inner-max problem; this is more efficient in terms of time, but
leveraging a stronger attack such as PGD in these cases could yield stronger results.

Our evaluations also focus primarily on accuracy. With more time for this project, we would hope to
incorporated more fine-grained analyses such as attention-map inspection or layer-wise feature drift,
which limits our understanding of why certain defenses work or fail.

Finally, some phenomena we observe (such as decreasing FGSM success rate at higher € under our
filtering rules) are not fully explained and highlight open questions about the interaction between
model robustness and attack strength.

6 Individual Contributions

6.1 Areeb Gani

I worked on the construction of the adversarial dataset, including implementing the shard-based
generation pipeline and running all FGSM attacks at scale. I also implemented and ran the adversarial
training experiments and produced the corresponding robustness evaluations. Finally, I developed
the centralized evaluation pipeline and used it to benchmark the defended models under consistent
metrics and attack settings. Along with my teammates, I also contributed to the writing of the paper
as well.

6.2 Rohan Phanse

I worked on the robustness token experiments, updating Pulfer et al.’s [10] repository to improve
support for DINOv2, add support for DINOv3, and write the code necessary to conduct all of the
robustness token ablation studies and experiments in our project. I also contributed to the writing of
the paper as well.

6.3 Vishak Srikanth

I designed the framework for dataset generation for the patch-based attacks and patch-based defenses
portions, ran extensive experiments for the attack-defense combinations as well as discussions and
conclusions sections and contributed to the writing of the paper.
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7 Appendix

7.1 Reproducibility

Custom datasets and model weights for our project are provided in our Hugging Face repository:
https://huggingface.co/cpsc-5710-final-vit-robustness.

7.1.1 Robustness Token Experiments

We provide our fork of Pulfer et al.’s [10] repository at https://github.com/rohanphanse/robustness-
tokens, The training and evaluation results in Figure[7 and Table[2]can be reproduced by following
the setup guide in README . md and then running train.sh and eval. sh respectively.

7.2 Additional Results

The training loss curves for DINOv2 and DINOv3 with robustness tokens are provided in Figure |7}
DINOvV2 models were trained with a batch size of 8, a learning rate of 1073, and a maximum of 100
steps (see the configuration file used to train robustness tokens for DINOv2-ViTB/14 here). DINOv3
models were trained with a batch size of 8, a learning rate (LR) of 102 (with an LR-warmup of 50
steps for DINOv3-ViTB/16), and a maximum of 100 steps.

Train Loss

/,\\/ \ /\/ \\/\/\/

N
s

99:1.81688 dinov2_vits14 (10 tokens)
99:1.81611 dinov2_vitb14 (5 tokens)
99:1.79062 dino 14 (2

99:1.78581 dinov2_vitb14 (1 token)

== 99:1.60324 dinov3_vitl16 (10 tokens)

Step

0 20 40 60 80

Figure 7: Training loss curves for DINOv2 and DINOv3 models trained with robustness tokens.

7.3 Dataset Analysis

We conducted an exploratory data analysis on ImageNet-1k by analyzing the first 10,000 samples
in the training dataset. This subset covers all 1,000 classes of ImageNet-1k. The class frequency
distribution is depicted in Figure[§] Specifically, the number of samples per class ranges from 3 to 22,
with 10 samples per class on average and a standard deviation of 3.07. Examples from ImageNet-1K
are visualized in Figure[9]

ImageNet-1K contains a highly diverse set of images varying in dimension, object scale, pose,
background, lighting, and more, reflecting real-world variation. Specifically, the first 10,000 training
images in ImageNet-1K have an average width and standard deviation of 473.2 &+ 201.6 pixels, and an
average height and standard deviation of 406.8 £ 174.9 pixels. This dataset poses complex challenges
for prediction models, with non-trivial intra-class variability and inter-class similarity and a variety of
image dimensions and resolutions covered.
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Table 4: Patch-based robustness of DeiT, DINOv2, and ViT on the 250-image clean-correct evaluation
set. Accuracy is computed only over images that are correctly classified under clean inputs with no

attacks and no defenses. ASR denotes attack success rate ASR = 1 — accuracy.

Model  Attack Type Defense Type Accuracy  ASR
deit Clean None 1.000 0.000
deit Clean blur 0.988 0.012
deit Clean compress 0.964 0.036
deit Clean patch_mask_blur 1.000 0.000
deit Clean patch_mask_zero 0.996 0.004
deit patch_fool None 0.576 0.424
deit patch_fool blur 0.888 0.112
deit patch_fool compress 0.916 0.084
deit patch_fool patch_mask_blur 0.608 0.392
deit patch_fool patch_mask_zero 0.632 0.368
deit patch_perturbation  None 0.776 0.224
deit patch_perturbation  blur 0.948 0.052
deit patch_perturbation  compress 0.948 0.052
deit patch_perturbation  patch_mask_blur 0.796 0.204
deit patch_perturbation  patch_mask_zero 0.800 0.200
deit token None 0.864 0.136
deit token blur 0.968 0.032
deit token compress 0.932 0.068
deit token patch_mask_blur 0.864 0.136
deit token patch_mask_zero 0.876 0.124
dinov2 Clean None 1.000 0.000
dinov2  Clean blur 0.988 0.012
dinov2 Clean compress 0.968 0.032
dinov2  Clean patch_mask_blur 0.996 0.004
dinov2 Clean patch_mask_zero 1.000 0.000
dinov2  patch_fool None 0.340 0.660
dinov2  patch_fool blur 0.780 0.220
dinov2  patch_fool compress 0.916 0.084
dinov2  patch_fool patch_mask_blur 0.352 0.648
dinov2  patch_fool patch_mask_zero 0.368 0.632
dinov2  patch_perturbation None 0.632 0.368
dinov2  patch_perturbation  blur 0.940 0.060
dinov2  patch_perturbation compress 0.944 0.056
dinov2  patch_perturbation  patch_mask_blur 0.648 0.352
dinov2  patch_perturbation  patch_mask zero 0.652 0.348
dinov2  token None 0.692 0.308
dinov2  token blur 0.948 0.052
dinov2  token compress 0.936 0.064
dinov2 token patch_mask_blur 0.712 0.288
dinov2  token patch_mask_zero 0.760 0.240
vit Clean None 1.000 0.000
vit Clean blur 0.952 0.048
vit Clean compress 0.952 0.048
vit Clean patch_mask_blur 1.000 0.000
vit Clean patch_mask_zero 0.996 0.004
vit patch_fool None 0.292 0.708
vit patch_fool blur 0.616 0.384
vit patch_fool compress 0.632 0.368
vit patch_fool patch_mask_blur 0.296 0.704
vit patch_fool patch_mask_zero 0.340 0.660
vit patch_perturbation ~ None 0.540 0.460
vit patch_perturbation  blur 0.868 0.132
vit patch_perturbation ~ compress 0.860 0.140
vit patch_perturbation  patch_mask_blur 0.548 0.452
vit patch_perturbation  patch_mask_zero 0.596 0.404
vit token None 0.508 0.492
vit token blur 0.844 0.156
vit token compress 0.856 0.144
vit token patch_mask_blur 0.528 0.472
vit token patch_mask_zero 0.596 0.404
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Class Frequency Distribution of First 10K Images of ImageNet-1K
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Figure 8: A histogram of the class frequency distribution of the first 10,000 training images of
ImageNet-1k.
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Figure 9: Visualizations of the first four training images in ImageNet-1k with their corresponding
labels.
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